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Abstract Data points with small variations between them

are assumed to lie close to each other on a smooth varying

manifold in the feature space. Such data are hard to classify

into separate classes . A sequence of face pose images with

closely varying pose angles can be considered as such data.

The pose angles when large enough create images that are

largely differing from each other, and thus, the sequence of

face images can be assumed to be on or near a nonlinear

manifold. In this paper, we propose an unsupervised pose

estimation method for face images based on clustered

locally linear manifolds using discriminant analysis. We

divide the data into multiple disjointed, locally linear and

separable clusters. The problem of identifying which

cluster to use is solved by dividing the entire process into

two steps. The first step or projection using the entire

smooth manifold identifies a rough region of interest. We

use clustering techniques on entire data to form the pose-

dependent classes which are then used to find the first set of

discriminant functions. The second step or second projec-

tion uses trained cluster(s) from this neighbourhood to

obtain a second set of discriminant functions. The idea

behind such an approach is that the local neighbourhood

would be linear and provide better between-class separa-

tion, and hence, the classification problem would now be

simpler.

Keywords Pose estimation � Clustering � Smooth

manifolds � Discriminant analysis � Multiple subspaces

1 Introduction

Face pose estimation methods try to identify the orientation

of human face angles present in an image. Pose angle

estimation from face images is a subproblem of most face

analysis problems. Major research areas under pose esti-

mation are human–computer interface (HCI), 3D face

modelling, gaze identification, face expression recognition,

face recognition. . .etc. The knowledge about pose direction

can contribute useful information about a person’s intent

and behaviour. Also, there is an important meaning in the

movement of the head as a form of gesturing in a con-

versation [1]. Next level of development of computer

vision would be obtained through the combined effect of

head pose estimation and gaze tracking [2].

In a pose estimation problem, the training classes should

be pose dependent and should not be person dependent.

Also, availability of maximum possible pose angles for

training is key to identifying poses to a good resolution.

Such a training database would result in nonlinear face

pose manifolds in which the class separation between the

data points is small. We set the following objectives in this

work:

1. To develop an unsupervised method to obtain the

discriminant functions.

2. To develop optimal class clusters that lead to better

discriminant functions.

We propose a multilayer framework to obtain discrim-

inant functions from nonlinear manifolds. An automated

process (clustering) is used to obtain the pose-dependent

classes for training. In the first layer, the projection surface

is formed by using the entire data set. Clustering is per-

formed on these data to form unsupervised training classes.

These pose-dependent clusters are used for obtaining the
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discriminant features. The first layer gives a rough region

of interest. The idea here is that this step divides the

manifold into small regions of focus, where the manifold

can now be assumed to be linear. In the second layer, we

concentrate on this region of interest. Clustering approach

is again used to obtain unsupervised smaller classes. These

classes are now used to obtain a second set of discriminant

features that can now be used to obtain finer pose estima-

tion. By dividing the manifold into different layers and

then to different classes, the smooth varying nonlinear

manifold is now simplified into a locally linear problem.

Chutorian and Trivedi [1] give a detailed and organized

survey about different head pose estimation methods and

the evolution of this field. They give a description of the

advantages and disadvantages of various methods. Pose

estimation methods can be classified as appearance tem-

plate methods, detector arrays, nonlinear regression meth-

ods, manifold embedding methods, flexible methods,

geometric methods, tracking methods and hybrid methods.

Appearance template methods [3, 4] compare the test

image to a set of training images to find the closest tem-

plate by using an image comparison method of choice. The

number of training images can be extended at any time in

appearance template methods. But, this method assumes

that the region to be identified is localized and the local-

ization error will decrease the accuracy of the method.

Also, interpolation methods should be used for fine pose

estimation [1]. A hierarchical graphical model for pose

estimation from videos is proposed in [5]. This method

provides a probability density function for a range of pose

images. They are temporally modelled, and nonparametric

density estimation is used for pose estimation. This method

is successful in conditions like presence of occlusion, facial

hair and glasses, blur and various facial expressions.

Manifold embedding methods [6–8] follow low-dimen-

sional manifolds modelled from continuous variations in

head pose. New images can be embedded into this mani-

fold, and then, template matching or statistical analysis is

used for pose estimation.

Principal component analysis (PCA) is useful in the case

when data lie on a linear subspace. If the data are not

linear, PCA will not correctly extract the structure [6]. PCA

is used for pose estimation by projecting the images into

the PCA subspace [9]. Wavelet features were used here for

better accuracy. Linear discriminant analysis (LDA) [10]

maximizes the ratio of between-class variance to the

within-class variance. In such cases, the class separability

will be maximum. LDA can be used to obtain the dis-

criminant features for pose estimation [11]. PCA can out-

perform LDA when the training data set is small and also

PCA is less sensitive to different training data sets [12].

The kernalized translations of PCA and LDA are used for

classification in [8] and in modelling multi-view faces [13].

For large data set problems, multiple LDA subspaces can

be used for classification [14]. Here, the entire data set is

divided into different equal sized sub-classes. LDA sub-

spaces for each sub-class are then obtained. The unknown

sample is projected onto all the subspaces, and classifica-

tion is completed by a nearest neighbour search. They

select the sub-classes in a random manner, and the over-

lapping data points between two adjacent classes are not

considered. A multi-subspace analysis with discriminant

analysis is used for classification in [15]. This paper dis-

cusses two types of multi-subspace analysis. The first

method assumes that the images in the adjacent classes

may be overlapped. A separate projection plane is used for

the classification of these overlapped images. In the second

method, images are projected into any one of the projection

planes created by different predefined subspaces based on

the neighbourhoods. One conclusion drawn here is that the

way the sub-classes are formed affects the classification

accuracy and the class formation in both layers are com-

pletely supervised. A two-stage head pose estimation

framework is proposed in [8]. Here, the first stage estimates

a rough region of interest based on appearance-based

methods. In the second stage, geometric methods are used

for fine pose estimation.

Nonlinear dimensionality reduction techniques—iso-

metric feature mapping (Isomap) [16], locally linear

embedding (LLE) [17] and Laplacian eigenmaps [18]—are

applied for head pose estimation in [19–21]. The main

disadvantage of these methods is the absence of a projec-

tion matrix to handle new test data points after the training

process. Structural Laplacian eigenmaps [22] are used to

learn the models representing a concept defined by a set of

multivariate sequences. They use the intrinsic structure of

the data to model the manifold. Biased manifold embed-

ding (BME) [21, 23] framework for nonlinear dimension-

ality reduction uses the pose angle information for biasing

neighbourhood calculation, resulting in better accuracy.

But, this makes the process supervised since we need to use

the pose information in the training stage. BME is possible

only because completely annotated pose data are available

for the particular database. In most real scenarios, we do

not have the pose label information. It would be imprac-

tical for an end consumer to figure out pose information to

train a system to one degree accuracy. So BME is infea-

sible in real-time scenarios. They adopted a generalized

regression neural network (GRNN) with radial basis

functions for nonlinear mapping. Synchronized submani-

fold embedding (SSE) [24, 25] based nonlinear dimen-

sionality reduction method and random regression forests

are used for pose estimation in [26]. SSE and random

regression methods map the nonlinear data to linearly

separable low-dimensional data. Interpolation techniques

are used here to identify the missing range of pose values.
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Gaussian process latent variable models are used for

visualization of data in [27]. They model PCA as a gaus-

sian process mapping from a latent space to a data space. A

manifold-based two-layer (coarse and fine) pose estimation

framework is used in [28]. The coarse pose estimation is

based on supervised linear methods. First layer or coarse

pose estimation is based on LDA, and it is used for broad

classification of the test data into a rough region. The

second-layer classification used linear regression function

for fine pose estimation.

We propose a completely unsupervised multilayer

framework for pose estimation. Clustering methods are

used to form pose-dependent classes from the entire data

set. Clustering algorithms separate data into different

classes/subsets/categories with maximum within-class

similarity and between-class separation [29, 30]. K-means

clustering algorithm [31] is a well-known squared error

type clustering, and in this method the cluster centroids are

recomputed when a new sample joins a cluster. Clustered

single-layer discriminant analysis is used for pose classi-

fication in [32]. Here, the clustering techniques are used for

class formation for training. Automated class formation

reduces the effort of manual class formation in a large

database.

The unsupervised two-layer approach proposed in

this paper helps to divide the manifold into small local

regions. We used LDA for extracting the discriminant

features and nearest neighbour algorithm for classifi-

cation. LDA maximizes the ratio of between-class

variance to the within-class variance in any particular

data set, thereby guaranteeing maximal separability.

LDA is proper for pattern classification if the number

of training samples of each class is large [8, 12]. The

main aim of LDA is to find a projection line which

maximizes the ratio of between-class variance to the

within-class variance. The between-class scatter matrix

is defined as

SB ¼
Xc

i¼1

Niðli � lÞðli � lÞT ð1Þ

and the within-class scatter matrix is defined as

SW ¼
Xc

i¼1

X

xk2Xi

ðxk � liÞðxk � liÞ
T ð2Þ

where li is mean image of class Xi and Ni is the number of

samples in class Xi and c is the number of classes. If Sw is

nonsingular, the optimal projection Wopt is chosen as the

matrix with orthonormal columns which maximizes the

ratio between the determinants of between-class scatter

matrix to within-class scatter matrix of projected samples,

where

Wopt ¼ arg max
jWTSBW j
jWTSWW j ¼ ½w1w2. . .wm� ð3Þ

where fwiji ¼ 1; 2; . . .mg is the set of generalized eigen

vectors of SB and SW corresponding to the m largest eigen

values fkiji ¼ 1; 2; . . .mg, i.e.

SBwi ¼ kiSWwi; i ¼ 1; 2; . . .m ð4Þ

The maximum value of m is c� 1 [33].

Nearest neighbour algorithm with euclidean distance

measurement is used for classification. This considers the

euclidean distance between the feature vectors of training

and testing samples. The sample in the training images

with the shortest distance to the test sample will be the

winner, and the test image is classified as the corresponding

class of the training sample. The euclidean distance in n

dimensional feature space between two points a ¼
ða1; a2; . . .; anÞ and b ¼ ðb1; b2; . . .; bnÞ is defined by

deða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðbi � aiÞ2
s

ð5Þ

The decision boundaries of the decision regions pro-

duced by nearest neighbour technique are always piecewise

linear because they consist of a number of line segments

that are equidistant from a pair of samples of different

classes [31].

2 Multi-subspace discriminant analysis

The main objective of the multi-subspace approach is to

obtain locally linear portions of a nonlinear manifold by

dividing data into specific groups. The entire manifold is

used to find the first set of discriminant features to identify

a rough match. Separate subspace(s) is/are used from this

identified match neighbourhood for next level of feature

extraction. In this second-layer subspace(s), the images

would be well separated, and hence, classification should

be simpler. Linear discriminant analysis (LDA) is used for

feature extraction, and the nearest neighbour algorithm is

used for classification in both layers. A conceptual drawing

of the multi-subspace approach is shown in Fig. 1. This

approach should help in classification of data points

between adjacent classes by providing maximal separation

between classes. Figure 2a shows the projection of two

overlapping classes in the top two dimensions of the LDA

subspace. The nonlinearity of the images can be observed

from this projection, and the points inside the circle are

overlapping images. Figure 2b shows the second-layer

subspace projection of these images showing clear sepa-

ration between the classes.
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3 Clustered two-layer architecture

The accuracy/error rate of classification depends on the

elements of the training database and the number of classes

used for training and elements in each of those classes.

This becomes critical when we try to find the discrimi-

nating features. Manual clustering does not explain or

provide any logical or scientific base for forming classes

from a smooth manifold. We propose clustering methods

for automatic class formation for training. We use pose

angles of a single person for clustering as shown in Fig. 3.

The classes which now form should be based on the pose

angles and hence will be pose dependent. To complete the

class formation, we add the same pose angles of other

persons in the training set to the corresponding classes as

shown in Fig. 4. These classes are now used for training.

The classes formed after clustering are used to obtain the

discriminant functions. We project each image using these

discriminant functions, and the nearest neighbour algo-

rithm is used for classification. This approach can be

considered as single-layer classification (projection to one

common subspace).

Fig. 1 Multi-subspace projection

Dimension 1

D
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(a) Projection of Two Classes.

Dimension 1

D
im

en
si

on
 2

(b) Subspace Projection of Overlapping Images.

Fig. 2 Classification of data points in different projection planes.

Separate projection plane results in more class separation for

overlapping data points. a Projection of two classes. b Subspace

projection of overlapping images

Fig. 3 Clustering—conceptual drawing (pose images of a single

person is used for clustering)

Fig. 4 Clustering—final class formation conceptual drawing (pose

images of all other persons into corresponding classes). These final

classes are used for training, and they will be purely pose dependent
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Now we extend the pose estimation process to two

layers. The first layer identifies a rough region of interest,

and the second layer gives fine pose estimation. Classes

formed after the first-layer clustering are used for finding

the first set of discriminant functions. Classes close to

each other are found based on the euclidean distance

between the cluster centroids. Nearby classes are grouped

together to form a second-layer region of interest which is

again clustered into multiple classes. These classes are

used for finding the second-layer discriminant functions.

A conceptual drawing of this architecture is given in

Fig. 5.

During testing, we first identify a rough region to which

the test image could belong to. This rough area is shown as

ROI-1 in Fig. 5. Second-layer 1 is considered for the next

level classification because ROI-1 is in second-layer 1.

This rough region of interest is now divided into different

number of clusters as shown in Fig. 5.

4 Results and discussions

The proposed method is tested and evaluated on standard

face pose image databases. CUbiC FacePix database [34,

35] and Pointing’04 [36] database are used for experi-

mental analysis. Initially, we tested the approach in CUbiC

FacePix database, and then, the Pointing’04 database is

used for heterogeneous testing. CUbiC FacePix database

consists of pose images of 30 different persons in different

lighting conditions. Pose angle variation is from �90� to

þ90� per person. For testing, images captured from various

pose angles with an ambient light source are used. This

should ensure that the nonlinearity/variation is only due to

change in pose. Leave-one-out testing strategy is followed

here. One person’s data are taken out from the database for

testing, and the remaining data points are used for training.

In each iteration, a different person’s data are kept out for

testing. We iterate so that each person’s data are used for

testing. The training image which is closest to the test

image based on the euclidean distance measurement is the

winner. We calculate the mean absolute error (MAE) for

each iteration defined as

MAE ¼ 1

n
jĥi � hij ð6Þ

where ĥi is the estimated pose of the test input, hi is the

original pose of the test image and n is the total number of

samples used for testing.

To obtain the discriminant functions, the training data

are divided into different classes. The easiest way to do this

is to have each pose as its own class. But, this may not

result in the best MAE. To test this, we manually create

varying number of classes as shown in Table 1. To have

benchmark results, the MAE of LDA projections using

these classes is calculated and is as given in Table 2.

The clustering strategy is tested with K-means, fuzzy C-

means [31] and hierarchical clustering [31] algorithms, the

results for which are given in Tables 3, 4 and 5, respec-

tively. It is clear that when the number of clusters

increased, the error rate in pose estimation reduced. Clus-

tering approach gives results comparable to manual clus-

tering. Also, by using an automated clustering approach the

effort of manual clustering in a database containing more

than 5000 images is avoided.

Fig. 5 Clustered two-layer

architecture—conceptual

drawing
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We evaluate the performance of clustering approach by

varying the identity of the person under consideration for

clustering. This is important since we could use training

data of any of the persons under consideration. If accu-

racy were to depend on the person we choose for clus-

tering, we would have a problem. Let us assume that the

first person is to be tested. In this case, we could use any

of the remaining persons data for clustering. Initially, we

use the data of the second person for obtaining clusters.

These classes are used for finding discriminant features,

and MAE of pose estimation is calculated. This process is

iterated such that we obtain MAE using clusters formed

from each person in the database. Finding the average of

these MAE values over 30 iterations should give us an

idea about how person identity affects clustering process

and hence the estimation accuracy. We create 150 classes

using different clustering techniques, and the results of

this single-layer classification are shown in Table 6. From

Tables 3, 4, 5 and 6, it is clear that we can select pose

angles of any person for clustering since the variation in

MAE of pose estimation is low.

The nearest classes in the first layer are identified based

on the euclidean distance between cluster centroids. These

nearby classes are combined to form the second-layer

region of interests (ROI). Data points in each ROI are

clustered to get the second-layer classes. The number of

ROIs and number of classes in each ROI are varied, and

MAE of each combination is calculated. The best results

obtained are illustrated in Table 7. The nonlinear manifold

can be better represented by having more layers. Hence,

having a third or fourth layer should increase the estimation

accuracy. But for this, a very large data set is required.

Table 1 Manual clustering—

cluster information
Total number

of classes

Number of poses per

persons per class

Cluster information

6 30 First class consists of pose angles from 1 to 30

Second class consists of pose angles from 31 to 60 and so on

12 15 First class consists of pose angles from 1 to 15

Second class consists of pose angles from 16 to 30 and so on

18 10 First class consists of pose angles from 1 to 10

Second class consists of pose angles from 11 to 20 and so on

36 5 First class consists of pose angles from 1 to 5

Second class consists of pose angles from 6 to 10 and so on

181 1 First class consists of pose angle 1

Second class consists of pose angle 2 and so on

We consider the pose angle 0 only for the case where the total number of classes is 181. We neglect that

angle in all other cases in both training and testing

Table 2 Mean absolute error

for single-layer manual

clustering using linear

discriminant analysis

Number of classes 6 12 18 36 181

MAE (in degrees) 16.7378 6.7185 6.7943 5.5172 5.0236

Average time for classification (in seconds) 0.1782 0.7982 0.2108 0.2242 0.2774

Table 3 Single-layer classification using K-means clustering approach

Number of classes 6 12 18 36 75 150 181

MAE (in degrees) 13.6414 8.8029 7.5825 5.6006 5.2998 5.0538 5.0236

Average time for classification (in seconds) 0.2056 0.2067 0.2041 0.2135 0.2232 0.2390 0.2565

Table 4 Single-layer classification using fuzzy C-means clustering approach

Number of classes 6 12 18 36 75 150 181

MAE (in degrees) 14.5650 9.1168 6.9506 5.6856 5.5527 5.0700 5.0236

Average time for classification (in seconds) 0.2009 0.2051 0.2091 0.2134 0.2142 0.2334 0.2334
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The proposed method is compared with existing face

pose estimation approaches using grayscale features and is

shown in Table 8. The clustered two-layer architecture

approach performs better than all other methods except

localized model using canonical correlation analysis

(CCA), two-layer framework and supervised neighbour-

hood preserving embedding (NPE). In localized model

using CCA [28], a priori neighbourhood information is

given, and in supervised NPE, the out of sample extension

cannot be performed. In two-layer framework [28], the first

layer (coarse pose estimation) is performed using class-

based supervised techniques and tested using overlapping

regions. In contrast to this, the pose estimation in this

proposed method is unsupervised.

4.1 Heterogeneous testing

In real-time cases, the experimental situations would be

suddenly varying. The developers cannot predict all

experimental situations in the beginning itself. So to ensure

the robustness of the method, it is necessary to train the

system with one database and should be tested using

another database with entirely different experimental con-

ditions. Based on these considerations, we used two dif-

ferent databases for heterogeneous testing. CUbiC FacePix

database is used for training, and Pointing’04 database is

used for testing. These two databases are different in their

sizes and imaging conditions. The Pointing ’04 database

consists of different pose angles of 15 persons with vari-

ations of pitch and yaw angles in between �90 to þ90

degrees. Pitch and yaw angles are varied as [�90, �60,

�30, �15, 0, ?15, ?30, ?60, ?90] and [�90, �75, �60,

�45, �30, �15, 0, ?15, ?30, ?45, ?60, ?75, ?90],

respectively.

Table 5 Single-layer classification using hierarchical clustering approach

Hierarchical clustering

linkage criteria

Number of classes 6 12 18 36 75 150 181

Single MAE (in degrees) 26.0094 15.9560 12.9153 9.1180 7.0770 5.1249 5.0236

Average time for classification (in seconds) 0.2001 0.2049 0.2104 0.2121 0.2238 0.2430 0.2527

Average MAE (in degrees) 14.7543 15.9560 7.7118 5.9720 5.2610 5.0357 5.0236

Average Time for classification (in seconds) 0.2014 0.2049 0.2187 0.2137 0.2211 0.2393 0.2487

Complete MAE (in degrees) 16.1263 9.8665 7.9483 5.8133 5.2794 5.0284 5.0236

Average time for classification (in seconds) 0.2014 0.2055 0.2093 0.2135 0.2202 0.2401 0.2492

Median MAE (in degrees) 14.6455 9.2302 7.8746 6.0483 5.2160 5.0169 5.0236

Average time for classification (in seconds) 0.2014 0.2052 0.2091 0.2152 0.2196 0.2398 0.2484

Table 6 Single-layer

classification using clustering

approach by selecting pose

angles of different persons for

clustering—average MAE (in

degrees)

Number of classes 150

K-means 5.0880

Fuzzy C-means 5.0681

Hierarchical

Single 5.0411

Avereage 5.0409

Complete 5.0486

Median 5.0169

Table 7 Clustered two-layer architecture—MAE

Number of first-layer

classes

Second layer MAE (in

degrees)

Average time for

classification (in seconds)
Number of regions

of interests (ROI)

Number of classes

in each ROIs

181 25 2 5.7453 0.3637

3 5.9134 0.3687

4 5.5580 0.3747

150 25 2 5.9569 0.3563

3 5.4011 0.3598

4 4.6519 0.3545

75 25 2 6.1539 0.3478

3 6.2279 0.3503

4 4.5797 0.3399
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In CUbiC FacePix database, the images are varying with

an interval of 1� in yaw direction. The pitch angle is not

varying in this database. This larger database is used for

training. The face pose images of Pointing’04 database

with 0� pitch and yaw angles from �90� to þ90� are used

for testing. This subset of images of Pointing’04 database is

aligned in the same manner as in the CUbiC FacePix

database.

We evaluated the single-layer classification using

K-Means clustering approach. The training classes are

obtained from CUbiC FacePix database by K-means clus-

tering approach. The subset images of Pointing’04 are used

for testing. The evaluation results of this method are given

in Table 9. We also evaluated the clustered two-layer

approach using these two databases. The results of this

method are given in Table 10. We compared this hetero-

geneous testing strategy with the two-layer framework

proposed in [28], which uses the same heterogeneous

testing strategy and databases. These comparison results

are given in Table 11. Our single-layer clustering approach

Table 8 Comparison with existing methods

Sl.No Method MAE (in degrees)

1 Global model (CCA) [28] 10.03

2 Localized model (CCA) [28] 4.09

3 Two-layer framework [28] 4.14

4 Neighbourhood preserving embedding (NPE) [37] 8.20

5 Locality preserving projection (LPP) [37] 9.50

6 Supervised NPE [37] 4.40

7 Supervised LPP [37] 5.00

8 Multi-subspace discriminant analysis by considering overlapping images [15] 5.40

9 Multi-subspace neighbourhood discriminant classifier [15] 6.79

10 Manual class formation (Single layer) 5.02

11 Single-layer clustering strategy 1 [32] 13.42

12 Single-layer clustering strategy 2 [32] 5.02

13 Clustered two-layer architecture approach 4.5497

Table 9 Single-layer classification using K-means clustering approach—heterogeneous testing

Number of classes 6 12 18 36 75 150 181

MAE (in degrees) 44.3385 44.7231 41.9538 50.7385 50.3558 16.9538 14.4615

Average time for classification (in seconds) 0.2475 0.0077 0.182 0.1487 0.1928 0.2475 0.3127

Table 10 Clustered two-layer architecture—heterogeneous testing

Number of

first-layer classes

Second layer MAE (in

degrees)

Average time for

classification (in seconds)
Number of

region of interests (ROI)

Number of

classes in each ROIs

181 25 2 11.2308 0.8937

3 12.4308 0.8777

4 12.0108 0.8921

150 25 2 15.2923 0.9240

3 14.5692 0.8438

4 14.8000 0.8862

75 25 2 14.7435 0.8113

3 12.7231 0.8335

4 13.9692 0.8314
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performance is very close to the two-layer framework

proposed in [28], and a better result is obtained in clustered

two-layer approach.

We also evaluated the processing times of all methods in

a PC with Intel(R) Xeon(R) CPU of 3:70GHz and 8-GB

RAM. We obtained the processing time of all pose esti-

mations except heterogeneous two-layer approach as less

than 0.5 s and this method consumes just less than 1 s.

5 Conclusion

In this paper, we proposed a method for classification of

nonlinear face pose manifolds based on multiple subspaces

using discriminant analysis. Themain objectives of thiswork

are to develop an unsupervised method to obtain the dis-

criminant functions and to develop optimal class clusters for

better discriminant functions. Clustering approaches were

used to obtain the optimal class clusters. This automated

process overcame the difficulty of manual clustering. The

proposed multilayer framework was used to obtain dis-

criminant functions. The first-layer classification identified a

rough region of interest. In the second layer, the classifica-

tion is concentrated on this region of interest. We performed

experiments on standard face data bases to determine the

effect of varying parameters on classification accuracy and to

evaluate the processing time of our method. Heterogeneous

testing was used to prove the robustness of the method and

good results were obtained. The proposed approach was

tested against other state of the art methods, which are

supervised and comparable results were obtained.
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