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Abstract

The classification of smooth varying data that lie close to each other becomes
a hard problem since there is very small class separation between them. Avail-
ability of close and adjacent poses result in an assumption of smooth manifold.
Distinguishing between poses that lie close to each other becomes a complex
problem. This paper proposes classification of smooth varying manifolds based
on multiple subspaces with discriminant analysis. We divide the smooth mani-
fold into multiple disjointed, locally linear, separable clusters. The problem of
identifying which cluster to use, is solved by dividing the entire process into
two steps. First step, or projection using the entire smooth manifold, identi-
fies a rough region of interest. Second step, or second projection uses trained
cluster(s) from this neighbourhood to identify closest pose.

Keywords: Smooth Manifolds, Discriminant Analysis, Pose Classification,
Multiple Subspaces.

1. Introduction

Generally face pose manifolds are smooth varying provided there is no or
small variation in other parameters like lighting. The data points of multiple
adjacent classes may appear overlapped or may be too close to each other in
such a case. The probability for misclassification using normal discriminant
analysis is high due to this overlapping. Multiple subspaces based discriminant
analysis method proposed in this work, projects this overlapped data to other
subspaces aiming to provide better class separation and hence better overall
accuracy. The objectives of this paper are, to develop a generalized two layer
framework on Linear Discriminant Analysis (LDA), and to prove the robustness
of the approach that may then be extended on to other feature based methods.
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Chutorian and Trivedi [1] gives a survey on different head pose identification
methods, where they discuss the implicit difficulties in head pose estimation and
present an organized survey describing the evolution of the field. They classified
manifold embedding methods into linear subspaces, kernelized subspaces and
non linear subspaces. Manifold embedding methods follow low dimensional
manifolds modelled from continuous variations in head pose. New images can be
embedded into this manifold and then template matching or any other statistical
analysis can be used for pose estimation.

Sherrah et.al [2] found that the most prominent linear dimensionality reduc-
tion method, Principal Component Analysis (PCA) yield an identity invariant
representation and the similarities can be vigorously calculated. Also, PCA [3]
manifolds can be used for pose estimation by projecting the image into the PCA
subspace. LDA explicitly attempts to model the difference between the classes
of data and is proper for pattern classification if the number of training samples
of each class are large. LDA maximizes the ratio of between-class variance to the
within-class variance in any particular data set thereby guaranteeing maximal
separability [4]. Srinivasan and Boyer [5] demonstrated the use of view based
eigenspaces for head pose estimation from head and shoulders video sequences.
The kernalized translations of PCA and LDA are also good for classification [6]
and in modelling multi-view faces [7]. The non linear dimensionality reduction
techniques include methods like Isometric feature mapping (Isomap) [8], Locally
Linear Embedding (LLE) [9] and Laplacian Eigenmaps [10] can also be used for
head pose estimation. While these techniques capture the geometry of the data
points in the high-dimensional space, the disadvantage of this family of man-
ifold learning techniques is the unavailability of a projection matrix to embed
out-of-sample data points after the training phase [11]. Balasubramanian et.al
[11] suggested biased manifold embedding which uses the pose angle informa-
tion for the formulation of biased neighbourhood of each point in embedding
and justified it with Isomap, LLE and Laplacian eigenmaps.

Foytik and Asari [12] proposed a two layer framework for head pose estima-
tion based on LDA and Canonical Correlation Analysis (CCA). In this paper,
in the first layer, the supervised linear method - LDA is used for coarse pose
estimation. In the second layer, fine pose estimation is performed using region
dependent pose regressive transforms.

Wang and Tang [13] proposed random subspaces for the projection in dis-
criminant analysis. Here, small number of training images are randomly selected
and this can be used for making random subspaces. Finally, fusion methodolo-
gies are used for combining these random subspaces. Uray et.al [14] proposed
multiple subspace projections based on the linear separability of classes [15].

2. Linear Discriminant Analysis

PCA and LDA are two regularly used linear techniques for data classifica-
tion and dimensionality reduction. The difference between the classes of data is
obviously explained in LDA and it is not treated in PCA. The main objective



of LDA is to perform dimensionality reduction by sustaining the class discrimi-
natory informations as much as possible. LDA tries to find the directions along
the classes that are well separated by taking into consideration of scatter within
and between classes. LDA maximizes the ratio of between class variance to
the within class variance in any particular data set thereby guaranteeing max-
imal separability. LDA does not change the location after transformation but
only tries to provide more class separability and draw a decision region between
the given classes [4]. LDA is proper for pattern classification if the number of
training samples of each class are large.
The between class scatter matrix is defined as

Sp = Z Ni(pi — 1) (s — o)™ (1)

and the within class scatter matrix is defined as

C
Sw =Y > (xr—pi)(zr—p)" (2)
i=1 z,EX;

where p; is mean image of class X; and N; is the number of samples in class
X; and c is the number of classes. If S, is non singular, the optimal projection
Wopt is chosen as the matrix with orthonormal columns which maximizes the
ratio of the determinant of the between class scatter matrix of the projected
samples to the determinant of the within class scatter matrix of the projected

samples, where

WTSgW
Wopt = arg maxm = w1 wa ... Wy (3)
where {w; | i = 1,2,...m} is the set of generalized eigen vectors of Sp and
Sw corresponding to the m largest eigen values {\; | i = 1,2,...m}, i.e.,
Spw; = \iSww;, i = 1,2,...m (4)

The maximum value of m is ¢ — 1 [16].

3. Multi Subspace Discriminant Analysis

The classification based on multi subspace discriminant analysis consists of
two steps. Initially, the entire manifold is used for the projection for identifying
arough area/class. Then, another subspace(s) is/are used for next level of classi-
fication. This paper proposes two types of multi subspace discriminant analysis.
The first one is based on classification by considering a predefined subspace by
considering the overlapping images and the second one is the classification by
predefined subspaces based on the neighbourhoods.

Figure 1 shows the projection of two overlapping classes in top two dimen-
sions of the LDA subspace. The non linearity of the images can be observed
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Figure 1: Projection of Two Classes.

from this projection and the points inside the circle may create an uncertainty
in the classification. This images are projecting in to another subspace and in
this space this points are well separated. Figure 2 shows the subspace projection
in top two dimensions of LDA of this images and the images are well separated.
This plane is giving good accuracy in classification than the first projection
space for this points.
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Figure 2: Subspace Projection of Overlapping Images.

8.1. Multi Subspace Discriminant Analysis by Considering Overlapping Images

The final and initial data points of adjacent classes of smooth varying man-
ifold may be overlapped and reduces the classification accuracy and this over-
lapping area is considered as an area of uncertainty.

Overlapping data points of a smooth varying manifold in the area of uncer-
tainty are projected to another space, and this subspace can be used for the
decision making of overlapping test data points in a classification problem. Ini-
tially, different classes are created in such a way that each class consists of a
specific number of different pose angles of multiple people. All classes together
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Figure 3: Multi Subspace LDA.

will cover the entire training dataset. These different classes are used for the
training of the first layer projection features. Then, overlapping data points of
adjacent classes forms the new classes for the second subspace. Consider ten
images in a class for training. In this, 8t", 9*" and 10" of first class and 1°¢ and
274 of second class are taken as the overlapping data points. These data points
form the first new class for the second subspace for this multi subspace discrim-
inant analysis. Similarly, 8", 9** and 10*" of second class and 1°¢ and 2"¢ of
third class form another class for the second subspace for this multi subspace
discriminant analysis and so on. Then similar to the first case, LDA is applied
on these new classes and projected to the resulting subspace. In this new plane,
the new classes are well separated. This new plane is used for the projection of
test images in the overlapping cases as shown in figure 3.

8.2. Multi Subspace Neighbourhood Discriminant Classifier

This approach also consists of two steps. Initially, similar to the previous
case, the entire manifold is used in the first layer projection for identifying
a rough area/class. In the second layer, data is projected onto a predefined
subspace, formed using defined neighbourhoods, to identify the closest pose.

Initially, different classes are created in such a way that each class consists of
a specific number of different pose angles of multiple people. All classes together
will cover the entire training dataset. These different classes are used for the
training of the first layer projection features. Test data/image is projected
using these features and 'k’ nearest neighbours are calculated. This calculation
is based on the euclidean distance between the test image and training images.

For the second layer projection, different number of predefined projection
spaces are created using subsets of the larger training set. These subsets are
chosen such that, the entire dataset is covered, and each point may occur in



multiple training subsets. After projecting the test data in the first layer, we
look for the ’k’ nearest neighbours of test data. We choose that predefined
subspace, which is pointed to by the 'k’ nearest neighbours.

Consider ten images in a class for training in the first layer and the value of
'k’ is taken as 3 for the neighbourhood calculation. If the neighbours of a test
image are 2"¢, 37% and 4" poses, then the subspace containing 2"¢, 37% and 4"
pose images is used for the second layer projection. If a predefined subspace with
these pose images are not existing, then the subspace with maximum number of
images/poses of this neighbourhood is used for the second layer projection. For
example, assume the predefined subspaces are S; = [1,2,3,4], S2 = [3,4,5, 6],
53 = [5, 6, 7, 8], 54 = [7, 8, 9, 10] and S5 = [9, 10, 1, 2], where 51, SQ, 53, S4 and 55
consists of the corresponding pose images of all classes. Then, if the neighbours
of a test image are 2"¢, 3¢ and 4" pose images, then S; subspace is used for
the second layer projection because 2%, 3" and 4*" poses are in this subspace.
If the neighbours are 4", 5" and 9" pose images, then S, subspace is used for
the second layer projection because this subspace consists maximum number of
poses.

Nearest neighbour algorithm with euclidean distance measurement is used
for classification. Distance between the feature vectors of training and testing
samples after LDA projection is computed. The image in the database with
shortest euclidean distance with the test image is the winner. Leave-one-out
testing strategy is followed here. One sample from the database from each class
is kept out as the test image and the rest is used for training. In each iteration
a different sample is kept out as the test image. Experiment is iterated till all
the images in the database is used up as a test case. The dimensionality of
the feature subspace is varied and accuracy is plotted against it. Accuracy is
taken as the ratio between the number of correctly classified images to the total
number of examples.

4. Results and Discussions

The proposed multi subspace LDA method is tested and evaluated in a
smooth varying face pose manifold. The CUbiC FacePix database [17, 18] is
used for the experimental analysis. For training, we created 18 different bins.
Each class consists of 10 different pose angles of same person. For first subspace,
in the positive angles, the first class consists of pose angles from 1 to 10, second
class consists of 11 to 20 and so on. Similarly, in the negative side, first class
consists of —1 to —10, second class consists of —11 to —20 and so on. This
classes are using for the first layer of projection.

For second subspace, in the case of multi subspace discriminant analysis by
considering overlapping images, the most probable overlap images form different
classes. In this, 8", 9" and 10*" of one class and 1% and 2% of nearest class
form the different classes. Here, there are 18 classes for the normal projection
and 17 classes for multi subspace projection in this experiment. In the case
of neighbourhood based discriminant analysis, we created four different type of
arrangements of data to create predefined subspaces.
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Figure 5: Accuracy Curve for Second Multi Subspace Arrangement.

-©-Normal LDA

r =¥~ Multi Subspace Discriminant Analysis by Considering Overlapping Images

== Neighbourhood based Multi Subspace Discriminant Analysis with K = 2
-Q— Neighbourhood based Multi Subspace Discriminant Analysis with K = 3
-V Neighbourhood based Multi Subspace Discriminant Analysis with K = 4

4 6 8 10 12 14
Number of Eigen Vectors

Figure 4: Accuracy Curve for First Multi Subspace Arrangement.
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Figure 7: Accuracy Curve for Fourth Multi Subspace Arrangement.



First arrangement consists of five different spaces and they are S; = [1,2, 3, 4],
Sy =[3,4,5,6], S5 =1[5,6,7,8], 54 = [7,8,9,10] & S5 = [9,10,1,2]. Second ar-
rangement consists of three different spaces and they are S; = [1,2, 3,4, 5], S =
[5,6,7,8,9] & S5 = [8,9,10,1,2]. Third one is also created with three spaces
and they are S; = [1,2,3,4,5,6], S2 = [5,6,7,8,9,10] & S5 = [8,9,10,1,2,3].
Last arrangement has four different spaces and they are S1 = [3,4,5,6], Sy =
[5,6,7,8], S3 = [7,8,9,10] & S4 = 9,10,1,2]. Here, S; = [1,2,3,4] from class
1 will form class 1 in the second layer. Similarly class 2 in second layer will be
defined by the same set from class 2 of original data set.

The various results are as shown in figure 4, 5, 6 and 7 for first, second,
third and fourth multi subspace arrangements respectively. The accuracy of
multi subspace neighbourhood discriminant classifier is tested for different 'k’
values. In all cases, multi subspace discriminant analysis by considering overlap-
ping images method performs better than neighbourhood based multi subspace
discriminant classifier.

5. Conclusion

This paper proposed two different types of multi subspace discriminant anal-
ysis for classification of smooth varying manifolds. The area of uncertainty in
classification of a smooth manifold is projected to another subspace to obtain
better class separability. This subspace is used for the classification of data
points. The experiments performed on a standard face pose database demon-
strates the robustness of our method. The approach is scalable to other projec-
tion/embedding technique to yield better accuracies.
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