
 

 

International Journal of Computer Networking, 

Wireless and Mobile Communications (IJCNWMC) 

ISSN 2250-1568 

Vol. 3, Issue 3, Aug 2013, 73-78 

© TJPRC Pvt. Ltd. 

 

OUTLIER DETECTION ALGORITHMS FOR PREDEPLOYMENT SYMPTOM MINING 

DEBUGGING OF WIRELESS SENSOR NETWORK APPLICATION: A SURVEY 

SREEDEVI T. R & MARY PRIYA SEBASTIAN 

Department of Computer Science, Rajagiri School of Engineering & Technology, Kochi, Kerala, India 

 

ABSTRACT 

As advances in networking technology help to connect the distant and unapproachable corners of the globe, the 

importance of wireless sensor networks is increasing day by day. Wireless Sensor Network (WSN) applications are 

typically event-driven. While the source codes of these applications may look simple, they are executed with a complicated 

concurrency model, which frequently introduces software bugs, in particular, transient bugs. Such buggy logics may only 

be triggered by some occasionally interleaved events that bear implicit dependency, but can lead to fatal system failures. 

These deeply-hidden bugs or their symptoms can be identified by an effective outlier detection algorithm. In this paper, we 

provide a comprehensive survey of the different aspects of the current state of the art outlier detection systems. We also 

discuss the optimum features of an anomaly detection algorithm applicable for the Predeployment symptom mining 

debugging of a wireless sensor network application. 

KEYWORDS: Wireless Sensor Network, Debugging, Outlier Detection, Symptom Mining, Transient Bugs 

INTRODUCTION 

Wireless Sensor Networks (WSNs) have been advocated as a promising tool for environmental data collection and 

monitoring [1]. Recent publications however report that existing WSN applications frequently encounter failures due to 

various software bugs [2], posing a major barrier to their extensive deployments. In fact, potential industrial customers 

have ranked software reliability as the most critical concern toward adopting WSNs. A key reason is that the simple codes 

are in fact executed with a complicated concurrency model. As an energy-aware embedded device, a sensor generally 

works in an event-driven mode. Specific event-handling logic (i.e., event procedure) is activated by its corresponding event 

(i.e., a hardware interrupt) [3]. For example, when receiving a packet, the wireless interface chip will issue an interrupt, 

activating its corresponding event procedure to perform such actions as retrieving the packet content. During system 

runtime, events may occur randomly, and instances of event procedures may therefore start at any time and even interleave 

with each other.  Predeployment WSN debuggers based on symptom mining introduces the notion of event-handling 

interval to systematically anatomize the long-term execution history of an event-driven WSN system into groups of 

intervals. It then applies a customized outlier detection algorithm to quickly identify and rank abnormal intervals. Its 

design is based on a key observation that transient bugs make the behaviours of a WSN system deviate from the normal, 

and thus outliers (i.e., abnormal behaviours) are good indicators of potential bugs [4].  

In references[5][6] long-term execution history of an event-driven WSN system is carefully anatomized into 

groups of intervals, during which the same event type is being handled. Such a semantic partition can exploit the similarity 

of system behaviours when the same event procedure runs. A customised outlier detection algorithm is used to quickly 

identify and rank abnormal intervals. In order to apply an outlier detection algorithm we need to identify the features for 

such event procedure instances. There are many straightforward candidates for featuring the samples. Examples include 

memory usage, number of calls to a specific function and number of packets transferred. However, most of these attributes 



74                                         Sreedevi T. R & Mary Priya Sebastian 

 

are only suitable for specific applications. Based on these considerations, the attributes should be adequately chosen so that 

they are easy to quantify and suitable for generic WSN applications. 

Anomaly detection refers to the problem of finding patterns in data that do not conform to expected behavior[7] 

These nonconforming patterns are often referred to as anomalies, outliers, discordant observations, exceptions, aberrations, 

surprises, peculiarities, or contaminants in different application domains. Of these, anomalies and outliers are two terms 

used most commonly in the context of anomaly detection; sometimes interchangeably. Anomaly detection finds extensive 

use in a wide variety of applications such as fraud detection for credit cards, insurance, or health care, intrusion detection 

for cyber-security, fault detection in safety critical systems, and military surveillance for enemy activities. Another 

prominent application area for outlier detection algorithm is in symptom mining debugging of WSN application.  These 

algorithms will seek to find portions of a simulated WSN application run time data that are somehow different from the 

rest of the data set .The potential bugs of the application code can thus be identified in the pre-deployment stage itself. 

The ability to detect anomalies in the emulated program run time data of a WSN application is important for at 

least two reasons. First, detecting anomalies in pre-deployment time can be helpful in making an efficient application. 

Second, it will be very difficult to debug and change the embedded software after deploying it in the real area to be 

monitored .This article mainly focuses on identification of ideal features of an outlier detection algorithm for pre-

deployment symptom mining debugging of WSN application code. An analysis on the different aspects of an anomaly 

detection problem is done in section II. Based on this analysis a discussion on the ideal features of an outlier detection 

algorithm for discovering the hidden transient bugs in a Tiny OS application is done in section III. A table which 

summarizes this discussion is also listed in the above section. Section IV concludes the article. 

DIFFERENT ASPECTS OF AN ANOMALY DETECTION PROBLEM 

This section identifies and discusses the different aspects of anomaly detection algorithm. The selection of an 

outlier detection algorithm is determined by several different factors such as the nature of the input data, the availability or 

unavailability of labels as well as the constraints and requirements induced by the application domain. The features are as 

listed below. 

Nature of the Input Data 

A key aspect of any anomaly detection technique is the nature of the input data. Input is generally a collection of 

data instances (also referred as object, record, point, vector, pattern, event, case, sample, observation, or entity). Each data 

instance can be described using a set of attributes (also referred to as variable, characteristic, feature, field, or dimension). 

The attributes can be of different types such as binary, categorical, or continuous. Each data instance might consist of only 

one attribute (univariate) or multiple attributes (multivariate). In the case of multivariate data instances, all attributes might 

be of same type or might be a mixture of different data types. Input data can also be categorised based on the relationship 

present among data  instances [7]. Most of the existing anomaly detection techniques deal with record data or point data, in 

which no relationship is assumed among the data instances. In general, data instances can be related to each other. Some 

examples are sequence data, spatial data, and graph data. In sequence data, the data instances are linearly ordered, for 

example, time-series data, genome sequences, and protein sequences. In spatial data, each data instance is related to its 

neighbouring instances, for example,vehicular traffic data, and ecological data. When the spatial data has a temporal 

(sequential) component it is referred to as spatio-temporal data, for example, climate data. In graph data, data instances are 

represented as vertices in a graph and are connected to other vertices with edges.  

 



Outlier Detection Algorithms for Predeployment Symptom Mining                                                                                                                                75 

Debugging of Wireless Sensor Network Application: A Survey        

 

Availability of Labels 

The next feature of an outlier detection algorithm is availability of labels. The labels associated with a data 

instance denote whether that instance is normal or anomalous. It should be noted that obtaining labelled data that is 

accurate as well as representative of all types of behaviours, is often prohibitively expensive. Labelling is often done 

manually by a human expert and hence substantial effort is required to obtain the labelled training data set. Typically, 

getting a labelled set of anomalous data instances that covers all possible type of anomalous behavior is more difficult than 

getting labels for normal behavior. Moreover, the anomalous behavior is often dynamic in nature; for example, new types 

of anomalies might arise, for which there is no labelled training data. In certain cases, such as air traffic safety, anomalous 

instances would translate to catastrophic events, and hence are very rare. Based on the extent to which the labels are 

available, anomaly detection techniques can operate in one of the following three modes: 

 Supervised Anomaly Detection 

 Un Supervised Anomaly Detection  

 SemiSupervised Anomaly Detection 

Supervised Anomaly Detection techniques trained in supervised mode assume the availability of a training data 

set that has labelled instances for normal as well as anomaly classes. A typical approach in such cases is to build a 

predictive model for normal vs. anomaly classes. Any unseen data instance is compared against the model to determine 

which class it belongs to. There are two major issues that arise in supervised anomaly detection. First, the anomalous 

instances are far fewer compared to the normal instances in the training data. Techniques that operate in a semisupervised 

mode, assume that the training data has labelled instances only for the normal class. Since they do not require labels for the 

anomaly class, they are more widely applicable than supervised techniques. For example, in spacecraft fault detection, an 

anomaly scenario would signify an accident, which is not easy to model. The typical approach used in such techniques is to 

build a model for the class corresponding to normal behavior, and use the model to identify anomalies in the test data. 

Techniques that operate in unsupervised mode do not require training data, and thus are most widely applicable. The 

techniques in this category make the implicit assumption that normal instances are far more frequent than anomalies in the 

test data. If this assumption is not true then such techniques suffer from high false alarm rate. 

Reporting of Anomalies 

Another important aspect for any anomaly detection technique is the manner in which the anomalies are reported.   

Typically, the outputs produced by anomaly detection techniques are one of the following two types: Scores and Labels. 

Scoring techniques assign an anomaly score to each instance in the test data depending on the degree to which that instance 

is considered an anomaly. Thus the output of such techniques is a ranked list of anomalies. An analyst may choose to either 

analyze the top few anomalies or use a cut off threshold to select the anomalies. Labelling Techniques in this category 

assign a label (normal or anomalous) to each test instance. Scoring-based anomaly detection techniques allow the analyst 

to use a domain specific threshold to select the most relevant anomalies. Techniques that provide binary labels to the test 

instances do not directly allow the analysts to make such a choice, though this can be controlled indirectly through 

parameter choices within each technique. 

DISCUSSIONS 

Outliers might be introduced in the data for a variety of reasons like malicious activity, instrumentation error, 

change in the environment and human error. Outliers resulting from a malicious activity may be due to factors such as 



76                                         Sreedevi T. R & Mary Priya Sebastian 

 

insurance or credit card or telecom fraud, a cyber intrusion, a terrorist activity etc. Instrumentation error has its sources 

such as defects in components of machines or wear and tear or defects in the software. The outliers generated in the 

symptom mining of WSN application code can be classified into this category. Outliers can also be generated due to 

change in the environment such as a climate change, a new buying pattern among consumers, mutation in genes etc. All of 

the reasons have a common characteristic that they are interesting to the analyst. The interestingness" or real life relevance 

of outliers is a key Feature of outlier detection and distinguishes it from noise removal. 

In our context we have a data set of event procedure instances corresponding to a particular event and each 

instance is featured with attribute, instruction counter which is a vector of N elements, where N is the total number of 

instructions of the program’s corresponding machine codes. The i
th

 element of the vector denotes the execution number of 

the 
ith

 instruction during the interval type .The instruction counter is not the sole option to feature event procedure 

instances. The straightforward candidates for featuring the samples include memory usage, number of calls to a specific 

function, sequence of function calls, and number of packets transferred. However, most of these attributes are only suitable 

for specific applications. Another relevant approach is to feature the event procedure instances with number of function 

invocations. It is been observed that TinyOS applications are generally not designed to perform complex data computation 

with many looping and branching control flows due to hardware limitation [8]. Hence, showing the involved function 

invocations would be enough to indicate the control flows of the instance, and thus well captures its behaviours .This is 

also noticed by some existing approaches (e.g., [9]). 

Table 1: Features and Applicability 

Feature Classification Applicability 

Number of Attributes 

Univariate  No 

Homogeneous Multivariate Yes 

Heterogeneous Multivariate No 

Type of Attribute 

Binary No 

Categorical No 

Continuous Yes 

Relationship present among data 

Point Data Yes 

Sequence data No 

Spatial data No 

Graph data No 

Type of Anomaly 

Point Yes 

Contextual Anomalies No 

Collective Anomalies No 

Availability of Labels 

Supervised No 

Semi-supervised No 

Unsupervised Yes 

Output of Anomaly detection 
Score Yes 

Label No 

 

This article has identified the relevant features of an outlier detection algorithm which will be applicable for pre 

deployment debugging of wireless sensor network application. The event procedure instances of the WSN application code 

to be debugged does not relate to each other and can be considered as a point data. Now based on the availability of labels 

we have to choose an unsupervised algorithm where we will be under the assumption that majority of the training instances 

will be normal. Regarding the reporting of the anomalies a labelling technique has to be opted since careful manual 

inspection has to be performed on the top ranked anomalies .An efficient unsupervised outlier detection algorithm can 

score all samples conveniently according to their distances to the boundary it finds. The ranking can instantly show how 

suspicious a sample is in a comparative way. So the top k suspicious samples has to be taken for careful manual inspection, 

where k can be flexibly chosen and its selection depends on the  efforts we plan to put in manual inspections of the WSN 



Outlier Detection Algorithms for Predeployment Symptom Mining                                                                                                                                77 

Debugging of Wireless Sensor Network Application: A Survey        

 

application. The following table summarizes the analysis of various features of outlier detection algorithms and their 

applicability in the context of pre-deployment debugging of wireless sensor network application. 

CONCLUSIONS 

The version of WSN applications is fault-prone. The existing software testing techniques cannot be applied for 

testing WSN systems because many WSN bugs are subtly caused by random interleaving executions of event procedures. 

The WSN application bugs are difficult to debug since their symptoms are transient in nature, which rarely occurs in 

tremendous system runtime data. It demands tremendous manual effort , to examine whether a system behaves correctly or 

not. Symptom mining debugging is an efficient way for testing WSN systems. Such debuggers for finding out the potential 

transient bugs of WSN application code  divide the long-term system runtime data into event-handling intervals. It captures 

the system behaviours of each interval with various features like instruction counter, function call sequence etc. The 

features of the current state of the art outlier detection algorithms have been analysed and an ideal outlier detection 

algorithm features have been identified . The symptoms of potential bugs are thus exposed for human inspections. So 

selection of an efficient outlier detection algorithm will  lead to an efficient Predeployment symptom mining debugger 

which will expose relevant potential bugs of the with a minimum amount of time,cpu utilization and memory overhead.   

REFERENCES 

1. J. Kahn, R. Katz, and K. Pister, “Next century challenges:Mobile networking for “smart dust”,” in Proc. of the 

ACM MOBICOM, Seattle, Washington, Aug. 1999, pp. 271–278. 

2. K. Langendoen and A. B. O. Visser, “Murphy loves potatoes:Experiences from a pilot sensor network deployment 

in precision agriculture,” in Proc. of the International Workshop on Parallel and Distributed Real-Time Systems, 

Apr. 2006. 

3. G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity and yield in a volcano monitoring 

sensor network,” in Proc. of the USENIX OSDI, Seattle, USA, Nov.2006, pp. 381–396. 

4. A. Zeller, Why Programs Fail: A Guide to Systematic Debugging,2nd ed. Elsevier Science, 2009. 

5. Y. Zhou, X. Chen, M. Lyu, and J. Liu. “Sentomist:Unveiling transient sensor network bugs via symptom mining”. 

In Proc. of the IEEE ICDCS, pages 784–794,2010. 

6. Yangfan Zhou, Xinyu Chen, Michael R. Lyu, Jiangchuan Liu,”T-Morph: Revealing Buggy Behaviors of TinyOS 

Applications via Rule Mining and Visualization”, in Proc. of the  20
th

 ACM International Symposium on 

Foundations of Software Engineering,2012  

7. V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:A survey,” ACM Computing Surveys, vol. 41, no. 

3, pp. 15:1–15:58, Jul. 2009. 

8. TinyOS Home Page. http://www.tinyos.net. 

9. M. M. H. Khan, H. K. Le, H. Ahmadi, T. F.Abdelzaher, and J. Han. Dustminer: Troubleshooting interactive 

complexity bugs in sensor networks. In Proc. of the ACM SenSys, pages 99–112, 2008. 




