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  Abstract- A generic endoatmospheric guidance 
based on hybrid approach has been proposed in this paper. 
The problem here is to guide the vehicle in a fuel optimum 
maneuver from an initial state to the desired final state. 
The algorithm is based on the method of regular 
perturbation which is useful for the development of real 
time guidance algorithms. The proposed algorithm is 
suitable for both ascent and entry missions and here the 
ascent guidance problem alone is addressed. Hybrid 
method combines the numerical and analytic approaches 
thereby making it advantageous when compared to each of 
the methods being used independently. The results 
obtained validate the supremacy of hybrid method over 
conventional methods. 
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I. INTRODUCTION 
    

 Traditional launch vehicle guidance employs open 
loop guidance in the atmospheric phase and closed loop 
guidance once the vehicle is sufficiently out of the 
atmosphere [1]. Hanson et al made a first effort to compare 
closed loop and open loop guidance within the atmosphere 
[2].  Though the guidance approaches for exo-atmospheric 
phase are efficient and reliable, the use of open loop 
guidance for the atmospheric phase flight has been one 
cause of costly launch delays. This occurs when actual wind 
profile differs significantly from the mean profile used in 
computing the attitude control program. To overcome this 
problem a closed loop guidance approach using the hybrid 
method is developed for the endoatmospheric flight phase. 
  

 Numerical approaches when used alone have the 
disadvantage that the solution will take a long time to 
converge [3]. To be useful as a feedback guidance algorithm  

 

 
 
 
 

the solutions should converge quickly and reliably at each 
instant when the solution is updated during flight. 

  

 On the other hand the analytic approaches use 
regular perturbation method [4], [5] to correct the 
atmospheric guidance. In this method an approximate 
solution to a problem is constructed in terms of a small 
parameter which is termed as the expansion parameter. 
The advantage of using this method is that the non-
linearities can be treated as perturbations which can be 
neglected in the formulation of the zeroth order problem. 
This significantly simplifies the problem and makes it 
possible to obtain a closed form solution. The problem 
here is that significant non-linearties like aerodynamics 
must be neglected in the zeroth order problem in order to 
obtain analytic solution. Higher-order terms of the 
expansion include the effects of the neglected 
perturbation dynamics. This technique is preferred as a 
real-time, on-line guidance scheme to alternative 
numerical iterative optimization schemes because of the 
unreliable convergence properties of these iterative 
guidance schemes [6]. As the guidance algorithm is 
implemented in real time, closed form non-iterative 
solutions are desired. So optimal control approach is used 
which results in two point boundary value problem with 
split boundary conditions [7]. 

  

 Calise et al includes the construction of optimal 
guidance law based on asymptotic expansion with a small 
expansion parameter. The methods of Regular 
Perturbation Analysis and Collocation for numerical 
solution for optimal control problem are combined in [8].  

  

 In this paper, a generic endoatmospheric 
guidance algorithm based on hybrid approach has been 
developed. Hybrid method developed here, uses Calculus 
of Variations to solve the analytic portion of the problem 
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and Method of Variation of Extremals to solve the 
numerical part whereas Calise et al used the Method of 
Collocation to find the numerical solution. The algorithm 
developed is compatible for both ascent and re-entry 
missions. Here the ascent problem alone is addressed.   
 

 This paper is organized as follows. Section II gives 
a brief outline of the ascent guidance problem. Section III 
and IV presents the concepts of perturbation theory and the 
Regular Perturbation Approach. The detailed ascent 
guidance problem formulation and zeroth order problem are 
discussed in sections V and VI. The first order problem and 
the hybrid problem are described in sections VII and VIII. 
Results obtained using the proposed algorithm is presented 
in section IX and conclusions in section X. 

 

II.ASCENT GUIDANCE PROBLEM 

           The problem here is to guide the vehicle in a fuel 
optimum maneuver from an initial state to the desired final 
state and the vehicle is acted upon by thrust force, 
aerodynamics and gravitational force. 

          The problem is formulated as a Calculus of Variations 
problem where the aim is to minimize the fuel consumption 
thereby maximizing the payload into the orbit. Since here 
aerodynamics is also accounted, the problem cannot be 
solved analytically. For this purpose, analytically tractable 
portion of the problem is found, i.e. with the exclusion of 
aerodynamics and chosen a small angle approximation for 
the steering angle, alpha (α). As Calculus of Variations 
could not find a solution for the entire problem, here the 
Method of Regular Perturbation is used to find the solution.  

 

III.PERTURBATION THEORY 

 

 One of the main uses of asymptotic analysis is to 
provide approximations to differential equations that cannot 
easily be solved explicitly. The following is a general 2nd 
order differential equation for y(x, λ), a function of x and λ¸ 
 

),(),(),(
2

2

λλλ xryxq
dx
dy

xp
dx

yd
=++                 (1) 

 
 The independent variable here is x, with respect to 
which all differentiation and integration is applied¸ λ and 
any other variables upon which the solution of y could 
depend on are known as physical parameters and no 
differentiation or integration is carried out with respect to 
them. 
 
 The variable with respect to which the asymptotic  

behavior is studied is known as the asymptotic variable. 
In classical asymptotic analysis the asymptotic variable is 
taken as the independent variable of the differential 
equation. In perturbation theory the asymptotic behavior 
is studied with respect to a small physical parameter, 
usually denoted by ε.  
 
 The point in the domain around which the 
asymptotic behavior is studied is known as the asymptotic 
accumulation point. The most common differential 
equation problems where approximations are sought for 
are those of perturbation theory, where the accumulation 
point is ε = 0.  
  
 Perturbation theory deals with problems that 
contain a small parameter conventionally denoted by ε 
and solutions are sought as ε approaches 0. Perturbation 
theory can be split into regular and singular forms. Here 
Regular Perturbation theory alone is discussed.  
 

IV. REGULAR PERTURBATION METHOD 
 
 

 Very often, a mathematical problem cannot be 
solved exactly or, if the exact solution is available, it 
exhibits such an intricate dependency in the parameters 
that it is hard to use as such. It may be the case, however, 
that a parameter can be identified, say ε, such that the 
solution is available and reasonably simple for ε= 0. Then, 
this solution can be altered for non-zero but very small 
values of ε, say ε<1. This forms the basis of regular 
perturbation theory. In regular perturbation problem, the 
solution of a problem is sought as an expansion in terms 
of the asymptotic sequences {1, ε, ε2...} as ε→0.  
 
 A regular perturbation problem is one for which 
the perturbed problem for small, nonzero values of ε is 
qualitatively the same as the unperturbed problem for ε = 
0. One typically obtains a convergent expansion of the 
solution with respect to ε, consisting of the unperturbed 
solution and higher-order corrections. 
 
The simple quadratic problem given here containing ε as a 
coefficient of x is an example of a perturbation problem. 
 
 x2 −1 = ε x                                                                    (2) 
 

The two roots of this equation are 
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For small ε, these roots are well approximated by the first 
few terms of their Taylor series expansion  
 



 
 
x1 = 1+ ε /2 + ε 2/8 + O(ε3);                                             (4a) 
x2 = −1+ ε /2 + ε 2/8 + O(ε3);                                          (4b) 
 
The problem described here is solved using regular 
perturbation theory which involves four steps. 

 

 
STEP A  
Assume that the solution(s) of (2) can be Taylor expanded 
in ε. Then x is represented as 
x = X0 +ε X1 +ε2 X2 + O (ε3);                                           (5) 
for X0, X1, X2 to be determined. 
 
STEP B 
Substitute (5) into (2) written as x2 −1 − εx = 0, and expand 
the left hand side of the resulting equation in power series 
of ε . Using 
x2 = X0 

2+2 ε X0 X1 + ε 2(X1
2 +2 X0 X2)+ O(ε3);            (6a) 

εx =ε X0 +ε2 X1+ O(ε3);                                                  (6b) 
which gives 
X0 

2 −1+ ε1 (2X0X1 − X0) + ε2 (X1 
2 +2 X0X2 − X1) +  

O(ε3) = 0;                                                                          (7) 
 
STEP C 
Equate to zero the successive terms of the series in the left 
hand side of (7): 
O(ε0) : X0 

2−1 = 0;                                                          (8a) 
O(ε1) : 2 X0 X1 − X0 = 0;                                                (8b) 
O(ε2) : X1 

2 +2 X0 X2− X1 = 0;                                       (8c) 
O(ε3) : ........... 
 
STEP D 
Successively solve the sequence of equations obtained in 
(8). Since 012

0 =−X  has two roots, X0 = ±1, one obtains 

  
X0 = 1; X1 = 1/2; X2 =1/8;                                              (9a) 
X0 = −1; X1 = 1/2; X2 =1/8;                                            (9b) 
 

It can be checked that substituting (9) into (5) recovers (4).  
 

V. MATHEMATICAL MODELING OF THE ASCENT 
GUIDANCE PROBLEM               

  

 The problem model and the associated state 
variables are defined in figure 1. The position and velocity 
vectors in the guidance co-ordinate frame are represented as 
(r, Φ, u, w).  

 The vehicle is acted upon by thrust force, 
aerodynamics and gravitational force. The planar equations 
of motion of a vehicle with spherical gravity model [9] are 
considered here. 

 
Figure 1: Problem Model 

 
 
Initial Conditions of state variables as obtained from 
navigation are 
 
                                                                                      (10) 
 
Final Conditions are 
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where r is the radial distance, w is the vertical component 
of velocity, u is the horizontal component of velocity, Φ is 
the range angle ,t0 is the initial time and tf is the final time. 
 
The Flat Earth (FE) Guidance equations of motion are 
given by 
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where α is the steering angle, µ is the gravitational 
constant, and aT is the thrust acceleration. 
 
The assumptions taken are given by equations (16)-(19). 
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Equations (16) and (17) indicates small angle approximation 
for α,  uw/r is the Coriolis force, g is the gravitational 
acceleration, T is the thrust, m0 is the initial mass of fuel, 

•

m is the mass flow rate, ve is the exhaust velocity, τ is the 
vehicle fuel constant and t is the time. 

The steering angle, alpha takes the form  

 bat +=)tan(α ,                                                       (21) 

where a and b are the steering parameters.  
 
 Taking the effect of aerodynamics into account and 
resolving lift and drag forces into Cartesian co-ordinate 
frame results in the following equations of motion 
 

 
 
Figure 2: Transformation into Cartesian co-ordinate frame 
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The aerodynamic forces Lift and Drag are defined as  
 

LqSCL =                                                         (25)
 

DqSCD =                                                                   (26) 
 
where CL and CD are the lift and drag coefficients 
respectively which have fixed values, S is the reference 
area, and is q the dynamic pressure given by q=0.5ρv2. 
 
The density is assumed to be of the form   

he βρρ −= 0
,                                                                (27) 

 
where h is the atmospheric scale height, 

0ρ  is the 

reference density and β is the scale height.                                                                           
 

v is given by 22 wu +                                            (28) 

The steering parameters [9]   a and b are computed as, 
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The final time tf   is computed as 

                                                                                      (32) 

 

When tgo becomes small, i.e. as t approaches tf, the 
steering angle is calculated using 
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 Now the problem is a Nonlinear Two point 
Boundary Value Problem (TPBVP) which cannot be solved 
analytically. Numerical Integration poses difficulties since 
the boundary conditions are split. In order to obtain optimal 
trajectory, nonlinear TPBVP needs to be solved. Here 
comes the application of regular perturbation method. As 
explained earlier an expansion parameter ε is introduced 
which results in the following equations of motion  
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•
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 This separation of the dynamics into primary and 
perturbation terms allows a closed form solution to be 
obtained. 

 In both the zeroth and first order problems the 
vertical dynamics alone is considered.  

 

VI. ZEROTH ORDER PROBLEM 

 Using the method of regular perturbation [5] the 
state variables r and w are expressed as 

                                                                                          (37) 

                                                                                          
(38) 

Since for the zero order problem ε=0, the equations of 
motion are re-written as  
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VII. FIRST ORDER PROBLEM 

 To obtain first order solution, substitute equations 
(37) to (38) in equations (34) to (35) respectively and make 
ε=1. Here final time, tf is not constrained. Then the 
equations of motion become 
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VIII. HYBRID PROBLEM 

  In hybrid method both the zero and first order 
problems are combined as given in equations (43)-(44). 
Here zeroth order problem is solved analytically and first 
order problem is solved numerically. Combining the 
solution obtained using the two methods, final hybrid 
solution is obtained. Here ε is taken as 1. 

wr −=
•

                                                           (43)
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IX. SIMULATION RESULTS 

 The result of the hybrid problem along with a 
comparison of this method with the analytic method is 
presented in this section. The initial conditions are taken 
as w0=-500 m/sec, r0=6448000 m. The terminal 
constraints to be satisfied are rf =6610000 m, wf =-1600 
m/sec.  
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Figure 3: Vertical velocity Vs time 
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Figure 4: Radial distance Vs time 
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Figure 5: Steering angle Vs time 

 

 The results in figures 3 and 4 indicate that the state 
variables vertical velocity and radial distance are converging 
for a final time of 162.37 sec for the analytic method 
whereas a much faster convergence is obtained in the case 
of hybrid method which is 138.4 sec.  Figure 5 shows the 
variation of steering angle (α) with time for the two cases.   

 

 

 

 

X. CONCLUSIONS 

                  An endoatmospheric guidance algorithm 
which has the flexibility for performing for both ascent 
and re-entry missions is developed. The equations of 
motion for the ascent guidance problem are formulated in 
terms of a small expansion parameter, ε. The forces acting 
on the vehicle are separated into dominant forces and 
perturbation forces. In order to solve the guidance 
problem, the zeroth order problem is formulated by 
equating the expansion parameter to zero. Once the 
solution to the zeroth order problem is obtained, the 
higher order correction terms can be included to 
compensate for the effect of perturbation forces which are 
neglected in the zeroth order problem, thus formulating 
the first order problem. The zeroth and first order 
problems are combined using expansion parameter ε, and 
this result in hybrid problem, whose solution shows its 
supremacy over conventional methods. 
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