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Abstract. The analysis of observed time series from nonlinear systems is usually done by making a time-delay
reconstruction to unfold the dynamics on a multidimensional state space. An important aspect of the analysis is
the choice of the correct embedding dimension. The conventional procedure used for this is either the method
of false nearest neighbors or the saturation of some invariant measure, such as, correlation dimension. Here we
examine this issue from a complex network perspective and propose a recurrence network based measure to
determine the acceptable minimum embedding dimension to be used for such analysis. The measure proposed
here is based on the well known Kullback-Leibler divergence commonly used in information theory. We show
that the measure is simple and direct to compute and give accurate result for short time series. To show the
significance of the measure in the analysis of practical data, we present the analysis of two EEG signals as

examples.
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1. Introduction

Nonlinear time series analysis is an important area of
applied mathematics with many practical applications.
The method involves reconstruction of the underlying
dynamics [1] from the scalar time series by embedding it
in a higher dimension using time delay co-ordinates [2].
Quantifiers from nonlinear dynamics and chaos theory
[3,4] are regularly being employed for the quantitative
characterization of the dynamical system underlying the
time series. For example, the Grassberger-Procaccia (G-
P) algorithm [5] is commonly employed for computing
one of the most widely used invariant, the correlation
dimension D,.

An important aspect in the whole analysis is the
identification of the minimum (necessary) embedding
dimension for reconstructing the dynamics, especially
for real-world data where such information is not known
a priori. If the embedding dimension is less than the
actual dimension of the system, the computed mea-
sures tend to be inaccurate since the dynamics has not

been completely unfolded. On the other hand, if the
embedding dimension used is too large, the number of
data points in the time series needs to be corespond-
ingly large, leading to excessive computation. It also
enhances the computational error due to the presence of
additional unwanted dimension where no dynamics is
operating.

Two methods are commonly adopted at present to
get information regarding the appropriate embedding
dimension. One method is that of false nearest neigh-
bors (FNN) [6]. In this method, one looks at the behavior
of nearest neighbors to a reference point on the attrac-
tor under changes in the embedding dimension from M
— M + 1. The changes in the number of nearest neigh-
bors are studied by increasing M. When the attractor
is unfolded completely, the change in the number of
nearest neighbors — 0. The second method is to com-
pute some invariant measure, such as, the correlation
dimension D, [7] from time series by increasing M. If
D, shows saturation beyond an M value, it is chosen
as the minimum dimension to compute the nonlinear



44

measures. Both methods are efficient and are commonly
employed in nonlinear time series analysis, although
the accuracy of both methods decrease for short time
series.

Over the last one decade or so, a paradigm shift is
occuring in the field of nonlinear time series analysis,
with statistical measures based on complex network the-
ory are increasingly being applied for the analysis [8,9].
In this approach, the embedded attractor from time series
is first transformed into a complex network using a suit-
able scheme, with each point on the attractor identified
as a node in the network. If the transformation is done
properly, one can show that the structural properties
of the embedded attractor can be characterized by the
statistical measures derived from the complex network
[10]. Animportant advantage of this approach is that net-
work measures can be derived accurately from a small
number of nodes in the network and hence the anal-
ysis becomes reasonably accurate even for short time
series.

The method frequently employed to convert the time
series to complex network makes use of the property of
recurrence [11] of trajectory points in state space. This,
again, requires an embedding in an appropriate dimen-
sion using delay co-ordinates. Nodes corresponding to
points on the embedded attractor within a recurrence
threshold, denoted by ¢, are considered to be connected
in the resulting network. The details regarding the con-
struction of the network are presented in the next section.
We have recently shown [12] that the value of € to be
used is closely connected to M and hence the knowledge
of the correct value of M is important for the accu-
rate implementation of the scheme for converting time
series to network. So far, a network-based scheme to
estimate the minimum embedding dimension for time
series analysis has not been proposed in the litera-
ture. Our main aim in this work is to propose such a
scheme.

The measure we present is based on the well-known
Kullback-Leibler divergence [13, 14] used to differ-
entiate between two probability distributions, whose
details are discussed in the following section. The
measure is first tested using synthetic time series of
known dimension from standard chaotic systems and
its practical utility is explicitly shown using real-world
data. This article is organized as follows: In sec-
tion 2, the essential details of the recurrence network
construction are discussed and the Kullback-Leibler
measure is introduced. The measure is tested using
time series from standard chaotic systems with and
without adding noise in section 3. Practical utility of
the measure is also presented here using two exam-
ples of real-world data. Conclusions are drawn in
section 4.
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2. Recurrence networks and the Kullback-Leibler
measure

The first step to compute the required measure is to
construct the recurrence network (RN) from the time
series. RNs are un-weighted and un-directed complex
networks, and several authors have discussed in detail
[9, 15] how to convert a time series to a RN. We have
recently proposed a scheme [12] for this and have used
it to study the effect of noise on chaotic attractors [16].
Here we follow this scheme. Basically, two parameters
are involved in the construction, a recurrence threshold
€ that decides whether two nodes in the network are to
be connected or not and the embedding dimension M.
In our scheme, the choice of € is closely linked to the
value of M. The basic criterion used for the selection of
€ is that the resulting network just bcomes a single giant
component.

Once the RN is constructed, several statistical mea-
sures can be derived from it which are directly related
to the structure of the embedded attractor. Here we will
specifically concentrate on one such measure, namely,
the clustering coefficient (CC) [17]. We define the local
clustering coefficient C, of a node v as:
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where k,, is the degree of the node and f, are the number
of triangles attached to the node [18]. A triangle is the
simplest motif present in a complex network. The value
of C, measures how many of the nodes connected to the
node v are also mutually inter-connected and its value
is normalized between 0 and 1. By averaging C,, for all
the nodes over the entire network, we get the global CC
of the network.

In this work, our main focus is on C,. We compute
the probability distribution P(C,) of the local clustering
coefficient of nodes over the entire network. The proce-
dure is repeated by increasing the embedding dimension
M from 2 to 6. We do not go beyond M = 6 since we
use time series of limited length (N, < 5000). We com-
pare the probability distributions for two successive M
values and check the convergence of the distributions as
M increases. In order to quantify the difference between
two probability distributions, we make use of a measure
(denoted as KLM) based on the well known Kullback-
Leibler (K-L) divergence [13], widely used in informa-
tion theory [14] to differentiate between two probability
distributions. We compute KLLM as a function of M and
check its convergence with respect to M. If the mea-
sure shows convergence for P(C,) beyond M, then M
is taken as the required embedding dimension for the
system.
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Note that the basic idea behind this procedure is
analogous to finding the false nearest neighbors. When
the attractor is embedded in a lower dimension than
the actual dimension of the system, there will be false
neighbors within the recurrence threshold so that a ref-
erence node gets connected to many nodes which are
not real neighbors. Consequently, its clustering coeffi-
cient C, is affected. This is true for all nodes. Beyond
the actual dimension, the value of C, remains gen-
uine, making the probability distribution to converge
approximately. One advantage of the measure is that it
is simple and straightforward to compute and can be
derived from relatively small number of nodes in the
network.

The K-L divergence is usually applied in information
theory to differentiate between two probability distri-
butions, say P and Q. Specifically, the K-L divergence
from Q to P, denoted by Dg,; (P|Q) is a measure of the
amount of information lost when Q is used to approx-
imate P. For discrete probability distributions, the K-L
divergence from Q to P is defined as

D (PlO) = ¥ P log 22, @)
- 0()
For continuous distribution, the summation is replaced
by integration.
Here we compare the probability distributions of the
local clustering coefficients P(C,) for two successive
embedding dimensions M and (M + 1). We then apply

the above measure taking P as P(C,) for M and Q as
P(C,) for (M + 1) and denote it as KLM:

Py(C)
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where p,, is the average value of C, for dimension M
and p,,,  is that for dimension (M +1). These values are
added to capture the difference due to the displacement
of one profile from the other. The calculation is repeated
by taking the distributions for two successive M values
at a time and plotted as a function of M. We find that the
measure saturates beyond the embedding dimension at
which the structure of the attractor unfolds completely.
This is taken as the minimum dimension for embedding.

Note that by definition, the measure is always > 0, but
is not symmetric:

Dy, (P|Q) # Dy, (Q|P). “

In other words, if one computes the measure from (M +1)
to M instead of M to (M + 1), then the actual value of
the measure will be different. However, the final result
still remains the same as the difference in the measure
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for successive M values now starts diverging below the
actual dimension of the system. We have checked and
confirmed this. We first test the measure using synthetic
data from the standard Lorenz attractor time series and
also data added with different percentage of noise before
applying it to real-world data.

3. Application of Kullback-Leibler measure

Time series from standard Lorenz attractor is generated
with a time step of 0.05 and data length N, = 4000.
All analysis in this study are done with time series of
above length to show the potential of the proposed mea-
sure in the analysis of short time series. The time series
is embedded with dimension M varying from 2 to 6
with a time delay equal to the first minimum of the
autocorrelation. RNs are constructed for each embed-
ded attractors using the scheme presented in [12]. For
each case, the probability distribution P(C,) of C, is also
computed.

The results for M values 3, 4 and 5 are shown in
figure 1 (top panel). As expected, the three probability
distributions converge approximately since the dimen-
sion of the attractor is < 3. On the other hand, when the
same computation is repeated for random time series,
we find that P(C,) for each M vary randomly in the
whole interval [0, 1] without showing any convergence.

0.03¢

Figure 1. Probability distributions of the local clustering
coefficients of nodes of the RNs constructed from the time
series of the Lorenz attractor (top panel) and that from random
time series (bottom panel). The results from three different
embedding dimensions (M = 3,4, 5) are shown in both cases.
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The results for tha same 3 M values for random are
also shown in figure 1 (bottom panel). In the latter case,
the attractor tends to fill the phase space for every M
changing the connections of each node continuously and
hence varying C,. For a chaotic attractor, on the other
hand, C, and the global CC tend to saturate beyond a
certain M.

Another important aspect of the distribution as seen
from figure 1 is the way in which C, varies for the two
cases. For a chaotic attractor, because of the inherent
geometric structure, the clustering is generally high and
nodes with very low degree or isolated nodes are rare.
Consequently, nodes with C, — 0 are negligible. More-
over, the average number of connections for a node
is also high. For C, — 1, all the nodes connected to
node v are also to be inter-connected, the probability
of which is very low. This, in turn, makes the nodes
with C, — 1 also negligible. On the contrary, for the
random RN, the probability for both these extremes are
comparatively high. Hence, while C, for the RN from
a chaotic attractor generally varies over a small range
with the probability distribution having a well defined
profile, that for random is distributed over the whole
interval.

In order to show the variation of C, in a better manner,
we compute the cumulative distribution of P(C,) which
is generally used to reveal the trend in a probability
distribution. It is given by

1
Lorenz
O 0.5
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........... M=4
—M=5
0
1
Random

Figure 2. The cumulative distributions (see text) of the prob-
ability distributions of the local clustering coefficients shown
in the previous figure.
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max
Cv

F(C)= ) P(C). (5)

cl=c,

For the distributions given in figure 1, the cumulative
distributions are shown in figure 2. Note that the dis-
tributions for the 3 values of M for random can be
better differentiated in the latter figure. We have checked
the distributions P(C,) for RNs from several standard
low-dimensional chaotic attractors and have found that
they converge for M > 3.

To quantify this convergence, we now compute the
measure KLM taking two distributions with successive
M values at a time, in all cases. The results for two stan-
dard chaotic attractors and random are shown in figure 3
(top panel). It is evident that the measure correctly iden-
tifies the dimension of the attractor. We have checked
that the saturated values of KLM remains constant with
increase in the number of nodes N in the RN, which is
also shown in figure 3 (bottom panel).

An important issue in the analysis of observed time
series is contamination by noise. It is important to see
how any nonlinear measure is affected by noise added
to data, before the measure can be applied to real-world
data. To study the performance of the proposed measure
under noisy conditions, we now apply it to chaotic data
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Figure 3. Top panel shows the variation in the Kullback-
Leibler measure (KLM) computed with two successive
embedding dimensions M (randing from 2 to 6) for RNs
constructed from the time series of Lorenz attractor (solid
circle) and the Ueda attractor (solid triangles). The asterisks
are the corresponding variations of the measure for RNs from
random time series. In all cases, the number of nodes used
N = 4000, as indicated. The values of KLLM for the RNs from
the two chaotic attractors saturated upto M5|M6 are shown
as a function of N in the bottom panel.
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added with different percentages of noise. We use the
standard Lorenz attractor time series for this and gen-
erates data by adding 4%, 10%, 20% and 50% of white
noise to it. We undertake the above analysis on all these
time series by constructing RN and computing KLM.
In figure 4, we show the cumulative distributions for 3
values of M for time series added with 4% of noise (top
panel) and 20% of noise (bottom panel). Note that, as the
noise level increases, convergence of the distributions
get shifted to higher M value. To get a better idea of con-
vergence, we compute the KLLM as a function of M for all
the four percentages of noise and the results are shown
in figure 5. We find that both the actual converged value
of KLLM and the M value at which convergence occurs
increase with % of noise. Moreover, beyond a noise level
of 20%, the convergence seems to disappear, at least upto
the maximum M value we have used. In other words, the
measure is unable to give a proper embedding dimen-
sion if the data is contaminated by moderate or high
amount (> 20%) of noise. However, this is true with
most other measures as well. For example, in the case
of FNN, the precise value of M is known to be clouded by
noise [6].

Finally, as an example of application to real-world
data, we consider two typical EEG signals, one from
a healthy person and the other from a person having

Lorenz
SNR 25

Figure 4. Figure shows how the cumulative distributions of
the local CCs from RNs is affected by adding noise to a chaotic
time series. The top panel is obtained by adding 4% noise
while the bottom panel is for 20% of added noise to time series
from Lorenz attractor. Variation for 3 embedding dimensions
are shown with N = 4000.
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Figure 5. Varition of the measure KLM with M for RNs
constructed from Lorenz attractor time series with different
percentages of noise, namely, 4% (solid circle), 10% (solid
triangle), 20% (solid square) and 50% (open circle). In all
cases, N = 4000.

epileptic seizure. Both data consist of 4098 data points
and are shown in figure 6. The data have been studied
earlier and further details regarding its generation and
analysis can be found in Andrzejak er al. [19]. There
are indications of nonlinear signature in the dynami-
cal properties of the human brain’s electrical activity,
particularly during epileptic seizure, making the signal
low dimensional. We now construct RNs from the two
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Figure 6. Typical EEG signals (normalized) from a healthy
person (top panel) and during epileptic seizure (bottom panel).
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Healthy

Figure 7. Cumulative distributions of the local CCs of RNs
constructed from the EEG signals shown in figure 6, with M
values 3, 4 and 5.

signals and compute the distributions P(C,) for different
embedding dimensions M. The cumulative distributions
for M = 3,4 and 5 for both signals are shown in figure 7.
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Figure 8. Variation of KLM with M computed for the prob-
ability distributions of CCs from the two EEG signals (top
panel). The solid triangle is for healthy and the solid circle is
for the signal during seizure. The variation of D, with M for
the corresponding signals are shown in the bottom panel.
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The measure KLLM for the distributions are computed
as a function of M for both signals and their variation
is shown in figure 8 (top panel). It is clear that while
the measure for the signal during seizure shows con-
vergence for M > 3, such a tendency is absent for the
healthy signal. This indicates that the latter is either high
dimensional or involves fair amount of noise. To test this,
we compute the value of correlation dimension D, as a
function of M for the two signals using the box count-
ing scheme [20]. The results are also shown in figure 8
(bottom panel). As expected, the state of seizure shows
nonlinearity with D, saturating at a low value < 3 while
the D, for the healthy state keeps on increasing with M.
This shows that the measure is fairly accurate in deter-
mining the embedding dimension for low-dimensional
signals.

4. Conclusion

Network-based measures are now increasingly being
applied for the nonlinear analysis of time series data.
An important advantage of such measures is the
improved accuracy compared to conventional measures
in the analysis of short and non-stationary data usually
obtained from the real world. Here we present an RN-
based measure to determine the necessary embedding
dimension to be used for the delay-embedding, a method
normally used to reconstruct the dynamics in a higher
dimension from the time series.

The method involves computing the probability distri-
butions of the local clustering coefficients of all nodes in
the RN constructed for successive embedding dimen-
sions. A measure based on the K-L divergence is used to
determine the convergence of the probability distribu-
tions and the value of M where this happens is chosen as
the required dimension for embedding. Even though the
K-L divergence is a well-known measure in information
theory, its application in nonlinear time series analysis
is novel.

We show that the measure can accurately determine
the dimension for standard low-dimensional chaotic
attractors and for data with small amount noise con-
tamination (< 20%). To highlight the importance of the
measure in the analysis of practical data, we apply it to
two sample EEG signals, one from a healthy person and
the other during epileptic seizure.

The proposed method is analogous to the method of
FNN. One may consider this as a RN approach to find
the FNN. This is because we can consider the nodes
connected to a reference node in the RN as defining
the number of nearest neighbors to a reference point on
the attractor. Through local clustering coefficient, we
are finding how many nodes connected to a reference
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node are also mutually connected, in other words, how
many nearest neighbors to a point are also mutually
nearest neighbors. Thus, for chaotic attractors, the num-
ber of nodes with a given local CC remains constant
beyond the actual dimension. This, in turn, makes the
probability distribution converge as a function of M.
This convergence is quantified using a standard measure.

Finally, we do not claim that this measure by itself is
accurate enough to give the proper embedding dimen-
sion for all the different types of data from the real world.
For example, we have not checked the case of data with
high dimension, say, M > 4. This may require time
series with very large data length. Another possible issue
1s the amount of noise involved in the data about which,
a priori, we have no knowledge. If the distribution does
not show any convergence for the first few possible pair
of M values, we can only say that the data is either high
dimensional or involves fair amount of noise. However,
for low-dimensional data with relatively low noise level,
the method is simple and accurate even with limited data
length.
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