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Recurrence networks (RNs) have become very
popular tools for the nonlinear analysis of time-series
data. They are unweighted and undirected complex
networks constructed with specific criteria from
time series. In this work, we propose a method to
construct a ‘weighted recurrence network’ from a time
series and show that it can reveal useful information
regarding the structure of a chaotic attractor which
the usual unweighted RN cannot provide. Especially,
a network measure, the node strength distribution,
from every chaotic attractor follows a power law
(with exponential cut off at the tail) with an index
characteristic to the fractal structure of the attractor.
This provides a new class among complex networks
to which networks from all standard chaotic attractors
are found to belong. Two other prominent network
measures, clustering coefficient and characteristic
path length, are generalized and their utility in
discriminating chaotic dynamics from noise is
highlighted. As an application of the proposed
measure, we present an analysis of variable star light
curves whose behaviour has been reported to be
strange non-chaotic in a recent study. Our numerical
results indicate that the weighted recurrence network
and the associated measures can become potentially
important tools for the analysis of short and noisy
time series from the real world.

1. Introduction
The analysis of time-series data using complex network
measures has become an important area of research over
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the last two decades [1]. This graph theoretic approach to nonlinear time series analysis
has several advantages over the conventional approach based on measures like dimension
and Lyapunov exponent, especially in the characterization of the structural properties of the
underlying attractor. This approach involves first transforming the time series into a complex
network and analysing it using different network measures. Several methods [2–4] have been
proposed in the literature to transform a time series into a complex network, with each of
them finding application in particular contexts, to address the complementary features of the
time series not obtained from the conventional approach based on measures like dimension and
entropy.

A simple and direct method to convert a time series to a complex network is using the property
of recurrence [5] of every dynamical system and the resulting network is called recurrence
network (RN) [6], which is the focus of our study in this paper. To transform the time series
into an RN, it is first embedded in a multi-variate state space of dimension M using the time
delay coordinates [7]. Every point on the reconstructed attractor is then identified as a node
and a recurrence threshold (ε) is set to define the connection between two nodes. Two nodes
are considered to be connected if the corresponding points on the attractor are separated within
the limit of this threshold. From the construction, it is clear that the RN is an unweighted and
undirected network with the elements of the adjacency matrix Aıj either 1 or 0 depending on
whether two nodes are connected or not. Once constructed, an array of statistical measures [8] can
be defined from the RN that can characterize the structural properties of the attractor underlying
the time series [9].

Though the analyses reported so far in the literature have been mostly confined to such
unweighted networks, there have also been a few attempts in the past to use weighted network
and recurrence plot measures for the analysis of time series for specific practical applications
[10,11]. However, none of these works have used the weighted recurrence network (WRN)
approach and the related measures for the analysis of time series. Recently, Sun et al. [12] have
stressed the importance of weighted networks in the analysis of time series from dynamical
systems. The authors, however, use a different approach via a sliding window and symbolic
scheme to construct the weighted network from time series and illustrate the potential of their
approach in characterizing the global properties of the attractor and dynamical transitions, using
measures derived from the network. There have also been many recent advances on complex
network analysis using time series derived from a wide range of real-world systems [13–15].
A recent review of the existing methods and results can be found in [16]. Moreover, weighted
networks with weights assigned to links in different ways have been applied as models to analyse
many real systems [17].

In this paper, we show that the method of RN can be generalized to construct WRN from a time
series. We introduce a new method of assigning weight to a link between two nodes. Our analysis
presented here reveals some novel structural properties associated with chaotic attractors on the
one hand, and some potential practical applications of WRN on the other. Especially, we are able
to identify the WRNs from different chaotic attractors as a single class with similar node strength
distribution which may open up a new window in the study of complexity of dynamical systems
through time series. Our paper is organized as follows: The details regarding the selection of
recurrence threshold and the scheme for constructing the WRN are presented in the next section.
In §3, important network measures derived from the WRN and their relevance in characterizing
the structural properties of chaotic attractors are discussed. An analysis of variable star data is
presented in §4 and the paper is concluded in §5.

2. Weighted recurrence networks from time series

(a) Selection of recurrence threshold
The recurrence threshold, ε, is a crucial parameter since the characteristic properties of the RN
depend on its value. In general, for each embedded attractor reconstructed from a time series, the



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180256

...........................................................

value of ε has to be determined separately as it varies with the size of the attractor. (Since RNs
tend to random geometric graphs for large ε, the percolation threshold depends on the network
size, an aspect not much explored in the literature). Two criteria are usually employed [6,8] to
select ε. The first and the primary one is that there should be a giant component for the resulting
RN which sets a lower bound for ε. In order to ensure that the network is not overconnected, the
upper bound for ε is set such that the link density (the ratio of actual connections to all possible
connections in a network of N nodes) is only a small fixed fraction of the maximum possible
value. This provides a small range �ε of suitable threshold for each system where the resulting
network is considered to be a proper network representation of the time series.

Recently, we have proposed a scheme [18] where we tried to fix a small uniform range �ε for
choosing the threshold for time series from different chaotic systems. For this, we first transform
the time series to a uniform deviate so that the size of the attractor always remains within the
unit cube. To find the lower bound of ε, we use the standard criterion that the network turns
into a single giant component. The upper bound is determined by the condition that the network
is not overconnected. However, instead of fixing the link density, we apply a criterion that the
characteristic path length (CPL, that describes the global connectivity of the network) of RN
from chaotic time series is significantly different from that of white noise. Though this condition
appears subjective, we are able to fix an empirical upper bound for �ε with this. We also find
that, due to the uniform deviate transformation, the scheme provides (as an empirical result) an
approximately identical range of �ε for constructing RN from different chaotic time series for a
given embedding dimension M if the number of nodes N in the network is less than 10 000.

For example, for M = 3, the value of the recurrence threshold ε in our scheme is taken as 0.1.
The exact emergence of giant component for some systems is found to be at a slightly lower
value, but none greater than 0.1. In other words, the RNs constructed from standard chaotic time
series that we have analysed so far possess a giant component for ε = 0.1 for M = 3. Moreover, the
CPL and the clustering coefficient (CC) of RN from chaotic systems significantly differ from that
of white noise at this value of ε and the difference tends to zero as ε increases. Thus we choose a
small range �ε applicable to most systems with a lower bound 0.1 which is taken as the threshold
value for constructing the RN for M = 3. Similar results are obtained for other M values as well.

The scheme has been effectively applied to compare network measures from different chaotic
attractors [18], to study the influence of noise on the structure of chaotic attractors [19] and to
propose a new heterogeneity index [20] for complex networks which, in turn, provides a unique
measure for each chaotic attractor through RN. We stick to the same criteria for the selection of ε

in this work.

(b) Construction of the weighted recurrence network
The unweighted RN is constructed first using the selected value of ε. In order to convert it into
a weighted RN, one has to assign weight factors to every link in the network. For weighted
networks that model any real-world system or interaction, the weight factor will be specific to
the network. For example, in a transportation network, it may depend on the distance between
two nodes while for a communication network, the same may be characterized by the rate of
information transfer through the link. Here, we introduce a general criterion for assigning the
weight factors that can be adopted to any kind of network, but is especially useful for RNs.

Assume that the RN has N nodes and the ıth node has a degree ki. That is, it is connected to ki
other nodes in the network. The weight factor wij for the link between two nodes ı and j in the
network is defined as:

wij =
√

kikj

kmax
, (2.1)

where kmax is the maximum degree in the network. Note that the maximum possible value of wij
is normalized as 1 and occurs for a link between two nodes which are connected to kmax other
nodes in the network. For a reference node i in general, it is connected to ki other nodes with each
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link having a different weight factor. Note that the above method of assigning the weight factor is
a non-subjective criterion (independent of the details of interaction the network represents) and
hence can be adopted in several contexts. In particular, in the case of RNs, the connection between
two nodes comes by way of the proximity of the corresponding points on the embedded attractor.
Hence, nodes corresponding to more densely populated regions of the attractor will be connected
with more weight and vice versa. From the point of view of a network, the higher the number
of connections for a node ı , the shorter the path becomes when connected through the node. For
example, if a nearly isolated (with ki ∼ 1) node is connected to a hub, that connection carries a
high weight factor (due to the large degree of the hub) and provides an easy path between the
node and any other arbitrary node in the network.

The sum of the weight factors associated with a node as determined by its connections defines
the strength of the node, s [21,22]. For example, for the node ı , we have:

si =
ki∑

j=1

wij. (2.2)

If all the nodes have equal number of connections 〈k〉, the strength of each node is the same and
the network can be considered as a homogeneous weighted network. As the strengths among
the nodes become more diverse, the network becomes more heterogeneous. The average strength
associated with the whole network is defined as the weighted link density:

ρw =
∑

i,j wij

N(N − 1)
. (2.3)

3. Measures from weighted recurrence network
After constructing the WRN, we are now in a position to analyse various time-series data using
the characteristic measures of WRN. Here, we generalize three important network measures, the
degree distribution, the CC and the CPL for the WRN.

In this paper, we use time series from two standard chaotic systems and two representative
noise data as examples to illustrate the potential of WRN and its utility in the analysis of time-
series data. The chaotic time series are from the standard Lorenz attractor (parameters σ = 10,
ρ = 8/3 and r = 28) and the Rössler attractor (parameters a = 0.2, b = 0.2 and c = 7.8). In both cases,
the time series is generated using a time step �t = 0.05 after discarding the first 20 000 points as
transients.

Two different types of noise data are also used for the analysis. One is the white noise and
the other one is a candidate from the family of coloured noise. The coloured noises are correlated
random processes which are considered to be important in the analysis of chaotic data since they
share many characteristic properties common to chaotic data [23]. They are a class of random
processes with power spectra scaling as 1/f α , with α ranging, typically, from 1 to 2. Here, we
choose 1/f noise as a representative coloured noise which are ubiquitous in the real world and are
popularly called Brownian noise, since they behave identical to the Brownian motion. To compute
the characteristic measures, 10 different time series are used (by changing initial conditions for
chaos and with different simulations for noise) and the average is taken.

(a) Normalized strength distribution
For any unweighted complex network, the degree distribution, denoted by P(k), is a probability
distribution representing how many nodes have a given degree k. For random graphs (RG), the
degree distribution is Poissonian whereas for scale-free (SF) networks, it obeys a power law [24].
For the RN from chaotic time series, the degree distribution is characteristic to the structure
of the attractor [18]. To generalize the degree distribution for the WRN, we first note that the
characteristic property of a node that describes its connectivity in the network is not its degree,
but its strength s as defined in equation (2.2). In other words, the degree distribution has to be
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replaced by the strength distribution [25] of the weighted network which represents the probability
P(s) of nodes having a given strength s in a network of N nodes. Even though s varies discretely,
it is not an integer like the degree k.

Instead of using the strength distribution directly, we use a normalized strength distribution that
reveals the utility of WRN. Since s varies discretely, we can write

∑
s

P(s)�s = 1. (3.1)

We now find the number of nodes n(s) ≡ NP(s) (rather than the probability of nodes)
corresponding to the interval �s. Then the above equation can be re-written as

1
N

∑
s

n(s)�s = 1. (3.2)

We now consider the normalized strength sn = s/N, which varies in the unit interval [0, 1], and
compute the variation of n(sn) with sn for WRN from chaotic and random time series. Here, n(sn)
is the number of nodes having strength around the normalized value sn.

First, we show that the distribution is qualitatively different for chaotic and random data. In
figure 1a,c, we show the normalized strength distribution of the WRN from the Lorenz attractor
(solid circles) time series and the same for white noise (solid triangles). It is clear that the two
distributions are qualitatively different. While the first one appears to be a power law, the second
one decreases exponentially. We find that in the case of the Lorenz system, the variation can be
represented using the following functional fit:

n(sn) ∝ s−γ
n e−sn/c, (3.3)

with the parameters γ and c depending on the particular system. On the other hand, the
distribution for the WRN from white noise is purely exponential as:

n(sn) ∝ e−sn/c. (3.4)

To show the variation more clearly, the same distributions are plotted in log scale in figure 1b,d
with the functional fit as solid line in both cases. The crucial parameter here is the power law index
γ indicating a SF character for the distribution before exponential cut-off. The average value of γ

from 20 different simulations is found and turns out to be 0.33 ± 0.04 for WRN from the Lorenz
attractor. We have also checked the distribution for a few other standard chaotic attractors, such
as, the Rössler attractor, Henon attractor and Duffing attractor, and have found similar behaviour
in all cases.

We now show that this distribution is a characteristic property of every chaotic attractor and
is independent of changes in algorithmic parameters, such as, embedding dimension M and the
number of nodes in the network N. This is illustrated using the Lorenz attractor in figure 2a,b
for two N values with fixed M and vice versa. The result implies that the power law index γ

is a characteristic index for a chaotic attractor. The computation is repeated for white noise by
changing N and M. The results are also shown in figure 2c,d. Apart from the absence of power-
law scaling, the distribution is found to shift (figure 2d) as M changes. This is because, unlike
for the chaotic attractor, noise tends to fill the available state space which, in turn, changes the
constructed network and the corresponding measures as M changes.

To understand the emergence of a power law in the strength distribution for chaotic systems,
we look at the construction of the WRN more closely and find that the SF character follows from
the method of defining the strength of a node by summation over the weight factors of its links.
For the unweighted RN, the degree ki of the ıth node represents the local probability density
around the corresponding point on the attractor. So the degree distribution P(k) represents, as
a discrete distribution, how many nodes (local regions over the attractor) have the same degree
(probability density). This will be characteristic of the structure of the chaotic attractor and does
not change with either N or M, as we have shown [18].
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Figure 1. Normalized strength distribution of the weighted RN constructed from the Lorenz attractor time series (red solid
circles) and white noise (blue solid triangles) are shown in (a,c) with errorbar resulting from counting statistics. (For a network
withN nodes, the number n of nodeswith a given degree k has a standard error of

√
n(k). For n(k)→ 0, its value is normalized

to 1, theminimumcount.) The samedistributionsdrawn in the log scalewithout errorbar are shown in (b,d). The solid line in (b,d)
represents the fitting function for the corresponding distributions (see text). The embedding dimension used for constructing
the networks isM= 3 and the number of nodes in the network, N = 5000. (Online version in colour.)

On the other hand, for the WRN with weight given by equation (2.1), each node ı has a
strength si, which is the sum of the normalized weight factors of its connections. In other words, it
represents a blunt measure as it takes into consideration a node’s total involvement in the network
and not the number of other nodes connected to it [22]. For example, two nodes having totally
different number of connections (that is, degree) can have the same node strength as the weights
of edges of each connection are different. Thus, unlike the degree distribution, the distribution P(s)
cannot be directly correlated to the probability density variations over the attractor. However, we
find that this distribution, in general, has a common form independent of the structure of the
attractor.

It should be noted that, by construction, the WRN and the associated measures are related to
the structure of the embedded attractor and not directly to its dynamics. In order to support this,
we have checked the distributions derived from two different types of attractors. The first is a
strange non-chaotic attractor (SNA) [26,27] generated from a quasi-periodically forced pendulum
and the second one is periodic attractor. In the first case, the strength distribution was similar to
that from a chaotic attractor with power-law scaling and exponential cut off, while in the second
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Figure 2. (a,b) The normalized strength distributions of WRN constructed from the Lorenz attractor (without errorbar) for two
different values of N with fixed M (a) and vice versa (b). It is clear that the distribution remains unchanged with respect to
changes inM and N. (a,c)M= 3 with N = 5000 (red solid circles) and N = 10 000 (blue open triangles) while (b,d) N = 5000
with M= 3 (red solid circles) and M= 4 (black open squares). (c,d) The same results for WRN constructed from white noise.
Note the shift in the distribution as M changes (d). (Online version in colour.)

case, the distribution was qualitatively different with strength distributed over a small range of
sn and the number of nodes having strength within this range approximately remaining constant.
The range shrinks as N increases. From the above results, it follows that the power law scaling
is a consequence of the fractal structure of the attractor and has nothing to do with whether the
system is chaotic or not. The connection between the SF character of the distribution and the
fractal structure is a matter that requires a more detailed investigation.

(b) Weighted clustering coefficient
We now compute another primary network measure, the global CC [28] for WRN. To compute
the CC for the unweighted complex network, we first consider the local CC of a node ı as

Ci = 2fi
ki(ki − 1)

, (3.5)

where ki is the degree of the node and fi are the number of basic non-trivial motifs (triangles)
attached to the node [28]. The value of Ci measures how many of the nodes connected to the
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node ı are also mutually interconnected and its value is normalized in the range from 0 to 1. By
averaging Ci for all the nodes over the entire network, we get the global CC of the network.

To generalize this, the weighted local CC of a node ı , denoted by CW
i , is first determined

following Onnela et al. [29]. For this, we replace the number of triangles in equation (3.5) with
the sum of triangle intensities as

CW
i = 2

ki(ki − 1)

∑
j,l

(wn
ijw

n
jlw

n
li)

1/3, (3.6)

where the weight factors of the links are scaled by the largest weight factor in the network:

wn
ij = wij

max(wij)
. (3.7)

This definition also fulfills the requirement that CW
i → Ci as the weights become binary. The global

weighted CC of the network is now given by

CCW = 1
N

N∑
i=1

CW
i . (3.8)

We now compute the CCW for WRN from several standard chaotic attractors and random
data by changing N and M. The results are shown in figure 3a,b for the Lorenz and the Rössler
attractors as well as the white and the 1/f noise. Figure 3a shows the results when fixing M = 3
and changing N and figure 3b for fixed N = 5000 and changing M. The important result here is
that, just like the strength distribution, CCW is also a characteristic measure for a given chaotic
attractor independent of both N and M. On the other hand, CCW for both white noise and 1/f
noise show a decreasing trend as M increases, though tends to remain constant when M is fixed
and N is increased. This is because, for the random data, the trajectory tends to fill the available
dimension even as M → ∞, unlike for the case of a chaotic attractor. Thus, its CC tends to decrease
with M for a fixed N.

(c) Characteristic weight
In this section, we focus on another important measure of any complex network, namely, the CPL
and try to generalize this measure for the WRN that we consider here. We first briefly review the
basic ideas for the unweighted case. The CPL is a measure of the global connectivity of a network
and is defined through the shortest path length lij between any pair of nodes (ı , j ) in the network.
Here, lij represents the minimum number of nodes to be covered starting from a reference node ı
to reach any other node j in the network. To calculate CPL, we first compute lij for all the nodes
j for a given ı and the average is found. This is repeated by changing ı for all the nodes in the
network and the global average is found:

CPL = 1
N

N∑
i=1

⎛
⎝ 1

N − 1

N−1∑
j(
=i)=1

lij

⎞
⎠. (3.9)

To generalize this for the weighted network, one should first note that the shortest path has to
be replaced by the path with the maximum weight, since the connectivity increases with the weight
factor for a link. For example, suppose we consider the shortest path from a reference node ı to
any other node j , where ı and j are not directly connected. There will be different paths to reach
j from ı . The effective weight Ωij for different paths will be different. Note that we use a different
notation for the weight for a path which is, in general, a combination of several links. We have
to choose the path with the maximum of Ωij. To calculate the effective weight for a path between
nodes ı and j , we use the harmonic mean of the weight factors of all the links intermediate between ı and
j for the path [28]. This is repeated for all possible paths between ı and j and the highest effective

weight is chosen as the characteristic weight (CW) between the nodes ı and j denoted as Ω
f
ij.
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Figure 3. (a,b) The variation of the clustering coefficient (CCW ) of WRN, as a function of N, constructed from Lorenz attractor
(red solid circles), Rössler attractor (blue solid triangles), white noise (asterisk) and 1/f noise (black open square). The value of
M is fixed at 3. Panel (b) shows the same, but as a function of M with N fixed at 5000. (c,d) The results for the same systems
(symbols same), but the variation of CW as a function of N (a,c) with M fixed and vice versa (b,d). (Online version in colour.)

To illustrate the idea, consider a network of 5 nodes and assume that there are two possible
paths between nodes 1 and 2, namely, 1 → 3 → 2 and 1 → 4 → 5 → 2. The effective weight for the
former is given by

1

Ω
(1)
12

= 1
w13

+ 1
w23

. (3.10)

Or,
Ω

(1)
12 = w13w23

w13 + w23
. (3.11)

Similarly, for the latter, the effective weight is

Ω
(2)
12 = w14w45w52

w14w45 + w45w52 + w14w52
. (3.12)

The largest effective weight Ω
f
ij is averaged by changing j for a given ı and for the whole

network by changing ı from 1 to N. We call it the CW of the WRN denoted by CW:

CW = 1
N

N∑
i=1

⎛
⎝ 1

N − 1

N−1∑
j(
=i)=1

Ω
f
ij

⎞
⎠. (3.13)
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It gives a measure for the global connectivity of the weighted network analogous to the CPL.
However, a crucial difference between CPL and CW should be noted. When the connections are
binary, a higher value of CPL indicates that more nodes are to be visited, on the average, to reach
a node j from node ı . In other words, the global connectivity depends inversely on CPL, which is
always greater than 1. On the other hand, the weight Ωij for a path is defined in such a way that
a higher value of CW (which is always less than 1) indicates a better global connectivity for the
whole network.

This measure is now computed for the WRN from various chaotic time series and noise. The
results are shown in figure 3c,d for Lorenz, Rössler, white noise and 1/f noise. It is evident that
the behaviour of CW is similar to that of CCW . While it is a characteristic measure for a chaotic
attractor, the same is not true for white noise and 1/f noise. For both, the global connectivity of
the WRN decreases systematically as M is increased. This also implies that the WRN provides an
effective tool to distinguish a chaotic time series from white noise and 1/f coloured noise.

4. Analysis of variable star light curves
In this section, we check how the proposed measures are relevant in a real-world scenario
by analysing light curves from variable stars. We consider data from RR Lyrae stars from the
Kepler Archive where period doubling and strange non-chaotic behaviour have been reported
in previous analyses using conventional methods [30–32]. We use two sample light curves for
analysis from this group of stars, namely, KIC 4484128 and KIC 7505345. Continuous data
segments without gaps sampled at 0.0204 days involving 32 000 data points are used in both
cases. More details regarding the data can be found elsewhere [32].

We divide each light curve into four equal segments of 8000 data points each and the analysis is
done separately on each segment. We compute the quantifiers—normalized strength distribution,
CCW and CW—using each segment of the light curve. We find that the distributions of all the
segments of the light curves behave in an identical manner and the values of CCW and CW
converge to constant values as a function of M, within the numerical error. In figure 4, we show the
typical normalized node strength distribution for the two stars. The presence of a power law with
exponential cut off at tail is evident in both, which is in agreement with the strange non-chaotic
behaviour obtained in earlier analysis.

In figure 5, we show a combined plot of CW and CCW of all the data, both synthetic and real
world, analysed in this manuscript. Note that the values of both CW and CCW of the two noise
data are clearly separated from the rest of the data showing either chaotic or strange non-chaotic
behaviour. Also, the values for the two variable star data once again indicate their fractal nature.
The SNA shown in the figure was generated from:

d2x
dt2 + a

dx
dt

+ b sin x = d + c(cos ωt + cos Ωt), (4.1)

with a = 3.0, b = 1.0, c = 1.1, d = 1.33, ω = (3 − √
5)/4 and Ω = (1 + √

5)/4.

5. Discussion and conclusion
Nonlinear time series analysis makes use of many quantifiers based on chaos theory to
understand the nature of the temporal behaviour by reconstructing the dynamics of the
underlying system from a scalar time series. Over the last one decade, the complex network
approach to nonlinear time series analysis has gained importance due to several advantages over
the conventional approach. The method envisages the use of complex network measures in the
analysis of time-series data by first converting it into a complex network using a suitable scheme.
A popular scheme to convert time series to networks is by using the property of recurrence of
dynamical systems. In all such analyses done so far, the resulting RNs have been un-weighted
and un-directed. Here, we propose a method to construct WRN from a time series and discuss the
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Figure4. Node strengthdistributions of theweightedRN constructed from the light curves of twovariable stars. (Online version
in colour.)

relevance of associated measures and their practical applications in the analysis of both synthetic
and real-world data.

We show that the WRN and the associated measures have a lot of potential in the nonlinear
analysis of time-series data. The novel aspect in this work is the method of assigning weights to
the links which provides useful computational tools for the analysis of time-series data. However,
we do not claim that the method proposed here is the only one to construct WRN from a time
series. As already mentioned above, this is just one method of assigning weight factor to a
link whereby the nodes corresponding to higher probability density regions on the attractor are
connected with higher weight. Another possible method of assigning weights is based on the
distance function, as is done in some practical cases, such as traffic or communication networks.
Different method of assigning weights will be applicable for different practical problems and the
way the network is constructed to analyse a particular problem. The utility of the present scheme
is that it is suited to extract some useful information regarding the structure of chaotic attractors,
such as, the common power law in the node strength distribution.

Using the proposed scheme, we generalize three prominent network measures so as to make
them suitable for WRN and apply them to analyse time series from standard chaotic attractors,
white noise and 1/f coloured noise. For example, the degree distribution is generalized to the
node strength distribution, the CC and the CPL are converted to their weighted counterparts. It
is specifically shown that the node strength distributions of WRN from chaotic attractors follow a
power law with exponential cut-off while those from white and 1/f noise are purely exponential.
As the percentage of noise in the data increases, the power law part in the distribution
vanishes systematically and the distribution tends to an exponential with γ → 0. Moreover, the
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weighted clustering coefficient (CCW) and the CW of WRN from a chaotic attractor are invariants
independent of all parameters involved in the construction of the network other than recurrence
threshold which has to be chosen properly. On the other hand, both these measures systematically
get reduced with embedding dimension for white and 1/f noise, which implies that the local
clustering and the global connectivity keeps on reducing with M for noise. We foresee how the
measures proposed here therefore can become important and powerful tools for the analysis of
real world data. To show this explicitly, we analyse sample light curves from variable stars which
confirm their fractal nature as suspected from the previous analysis.

An important aspect of the whole analysis is that it is possible to identify the WRNs from
different chaotic attractors as a single class with qualitatively similar strength distribution having
power-law scaling and exponential tail. Such a classification was not possible so far with the
existing methods involving undirected RNs. Thus, WRNs can be added as a separate class to the
general set of complex networks. The power law index γ is a manifestation of the fractal structure
of the reconstructed attractor and can serve as a single unique index characterizing its geometric
complexity.

Finally, the method presented here has the advantage that accurate results can be obtained
with much lower size of the data since the measures are defined not based on the size of the
network (number of nodes) but on the connections between the nodes which will be much higher
by construction. Also, the proposed method of assigning weights is general and can be adopted
to generate weighted networks in other contexts like airport data, internet etc. with similar
characterizations. We hope the methods and measures presented here will open up a new window
in the pursuit of complexity in real-world systems, such as, climate and earth sciences [33,34]
where weighted networks play an important role, apart from quantifying structural complexity
of attractors through network-based approach.
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